// A recursive descent parser operates by defining functions for all // syntactic elements, and recursively calling those, each function // advancing the input stream and returning an AST node. Precedence // of constructs (for example, the fact that `!x[1]` means `!(x[1])` // instead of `(!x)[1]` is handled by the fact that the parser // function that parses unary prefix operators is called first, and // in turn calls the function that parses `[]` subscripts — that // way, it'll receive the node for `x[1]` already parsed, and wraps // *that* in the unary operator node. // // Acorn uses an [operator precedence parser][opp] to handle binary // operator precedence, because it is much more compact than using // the technique outlined above, which uses different, nesting // functions to specify precedence, for all of the ten binary // precedence levels that JavaScript defines. // // [opp]: http://en.wikipedia.org/wiki/Operator-precedence_parser import {types as tt} from "./tokentype" import {Parser} from "./state" const pp = Parser.prototype // Check if property name clashes with already added. // Object/class getters and setters are not allowed to clash — // either with each other or with an init property — and in // strict mode, init properties are also not allowed to be repeated. pp.checkPropClash = function(prop, propHash) { if (this.options.ecmaVersion >= 6 && (prop.computed || prop.method || prop.shorthand)) return let {key} = prop, name switch (key.type) { case "Identifier": name = key.name; break case "Literal": name = String(key.value); break default: return } let {kind} = prop if (this.options.ecmaVersion >= 6) { if (name === "__proto__" && kind === "init") { if (propHash.proto) this.raise(key.start, "Redefinition of __proto__ property"); propHash.proto = true } return } name = "$" + name let other = propHash[name] if (other) { let isGetSet = kind !== "init" if ((this.strict || isGetSet) && other[kind] || !(isGetSet ^ other.init)) this.raise(key.start, "Redefinition of property") } else { other = propHash[name] = { init: false, get: false, set: false } } other[kind] = true } // ### Expression parsing // These nest, from the most general expression type at the top to // 'atomic', nondivisible expression types at the bottom. Most of // the functions will simply let the function(s) below them parse, // and, *if* the syntactic construct they handle is present, wrap // the AST node that the inner parser gave them in another node. // Parse a full expression. The optional arguments are used to // forbid the `in` operator (in for loops initalization expressions) // and provide reference for storing '=' operator inside shorthand // property assignment in contexts where both object expression // and object pattern might appear (so it's possible to raise // delayed syntax error at correct position). pp.parseExpression = function(noIn, refDestructuringErrors) { let startPos = this.start, startLoc = this.startLoc let expr = this.parseMaybeAssign(noIn, refDestructuringErrors) if (this.type === tt.comma) { let node = this.startNodeAt(startPos, startLoc) node.expressions = [expr] while (this.eat(tt.comma)) node.expressions.push(this.parseMaybeAssign(noIn, refDestructuringErrors)) return this.finishNode(node, "SequenceExpression") } return expr } // Parse an assignment expression. This includes applications of // operators like `+=`. pp.parseMaybeAssign = function(noIn, refDestructuringErrors, afterLeftParse) { if (this.type == tt._yield && this.inGenerator) return this.parseYield() let validateDestructuring = false if (!refDestructuringErrors) { refDestructuringErrors = {shorthandAssign: 0, trailingComma: 0} validateDestructuring = true } let startPos = this.start, startLoc = this.startLoc if (this.type == tt.parenL || this.type == tt.name) this.potentialArrowAt = this.start let left = this.parseMaybeConditional(noIn, refDestructuringErrors) if (afterLeftParse) left = afterLeftParse.call(this, left, startPos, startLoc) if (this.type.isAssign) { if (validateDestructuring) this.checkPatternErrors(refDestructuringErrors, true) let node = this.startNodeAt(startPos, startLoc) node.operator = this.value node.left = this.type === tt.eq ? this.toAssignable(left) : left refDestructuringErrors.shorthandAssign = 0 // reset because shorthand default was used correctly this.checkLVal(left) this.next() node.right = this.parseMaybeAssign(noIn) return this.finishNode(node, "AssignmentExpression") } else { if (validateDestructuring) this.checkExpressionErrors(refDestructuringErrors, true) } return left } // Parse a ternary conditional (`?:`) operator. pp.parseMaybeConditional = function(noIn, refDestructuringErrors) { let startPos = this.start, startLoc = this.startLoc let expr = this.parseExprOps(noIn, refDestructuringErrors) if (this.checkExpressionErrors(refDestructuringErrors)) return expr if (this.eat(tt.question)) { let node = this.startNodeAt(startPos, startLoc) node.test = expr node.consequent = this.parseMaybeAssign() this.expect(tt.colon) node.alternate = this.parseMaybeAssign(noIn) return this.finishNode(node, "ConditionalExpression") } return expr } // Start the precedence parser. pp.parseExprOps = function(noIn, refDestructuringErrors) { let startPos = this.start, startLoc = this.startLoc let expr = this.parseMaybeUnary(refDestructuringErrors) if (this.checkExpressionErrors(refDestructuringErrors)) return expr return this.parseExprOp(expr, startPos, startLoc, -1, noIn) } // Parse binary operators with the operator precedence parsing // algorithm. `left` is the left-hand side of the operator. // `minPrec` provides context that allows the function to stop and // defer further parser to one of its callers when it encounters an // operator that has a lower precedence than the set it is parsing. pp.parseExprOp = function(left, leftStartPos, leftStartLoc, minPrec, noIn) { let prec = this.type.binop if (prec != null && (!noIn || this.type !== tt._in)) { if (prec > minPrec) { let node = this.startNodeAt(leftStartPos, leftStartLoc) node.left = left node.operator = this.value let op = this.type this.next() let startPos = this.start, startLoc = this.startLoc node.right = this.parseExprOp(this.parseMaybeUnary(), startPos, startLoc, prec, noIn) this.finishNode(node, (op === tt.logicalOR || op === tt.logicalAND) ? "LogicalExpression" : "BinaryExpression") return this.parseExprOp(node, leftStartPos, leftStartLoc, minPrec, noIn) } } return left } // Parse unary operators, both prefix and postfix. pp.parseMaybeUnary = function(refDestructuringErrors) { if (this.type.prefix) { let node = this.startNode(), update = this.type === tt.incDec node.operator = this.value node.prefix = true this.next() node.argument = this.parseMaybeUnary() this.checkExpressionErrors(refDestructuringErrors, true) if (update) this.checkLVal(node.argument) else if (this.strict && node.operator === "delete" && node.argument.type === "Identifier") this.raise(node.start, "Deleting local variable in strict mode") return this.finishNode(node, update ? "UpdateExpression" : "UnaryExpression") } let startPos = this.start, startLoc = this.startLoc let expr = this.parseExprSubscripts(refDestructuringErrors) if (this.checkExpressionErrors(refDestructuringErrors)) return expr while (this.type.postfix && !this.canInsertSemicolon()) { let node = this.startNodeAt(startPos, startLoc) node.operator = this.value node.prefix = false node.argument = expr this.checkLVal(expr) this.next() expr = this.finishNode(node, "UpdateExpression") } return expr } // Parse call, dot, and `[]`-subscript expressions. pp.parseExprSubscripts = function(refDestructuringErrors) { let startPos = this.start, startLoc = this.startLoc let expr = this.parseExprAtom(refDestructuringErrors) let skipArrowSubscripts = expr.type === "ArrowFunctionExpression" && this.input.slice(this.lastTokStart, this.lastTokEnd) !== ")"; if (this.checkExpressionErrors(refDestructuringErrors) || skipArrowSubscripts) return expr return this.parseSubscripts(expr, startPos, startLoc) } pp.parseSubscripts = function(base, startPos, startLoc, noCalls) { for (;;) { if (this.eat(tt.dot)) { let node = this.startNodeAt(startPos, startLoc) node.object = base node.property = this.parseIdent(true) node.computed = false base = this.finishNode(node, "MemberExpression") } else if (this.eat(tt.bracketL)) { let node = this.startNodeAt(startPos, startLoc) node.object = base node.property = this.parseExpression() node.computed = true this.expect(tt.bracketR) base = this.finishNode(node, "MemberExpression") } else if (!noCalls && this.eat(tt.parenL)) { let node = this.startNodeAt(startPos, startLoc) node.callee = base node.arguments = this.parseExprList(tt.parenR, false) base = this.finishNode(node, "CallExpression") } else if (this.type === tt.backQuote) { let node = this.startNodeAt(startPos, startLoc) node.tag = base node.quasi = this.parseTemplate() base = this.finishNode(node, "TaggedTemplateExpression") } else { return base } } } // Parse an atomic expression — either a single token that is an // expression, an expression started by a keyword like `function` or // `new`, or an expression wrapped in punctuation like `()`, `[]`, // or `{}`. pp.parseExprAtom = function(refDestructuringErrors) { let node, canBeArrow = this.potentialArrowAt == this.start switch (this.type) { case tt._super: if (!this.inFunction) this.raise(this.start, "'super' outside of function or class") case tt._this: let type = this.type === tt._this ? "ThisExpression" : "Super" node = this.startNode() this.next() return this.finishNode(node, type) case tt._yield: if (this.inGenerator) this.unexpected() case tt.name: let startPos = this.start, startLoc = this.startLoc let id = this.parseIdent(this.type !== tt.name) if (canBeArrow && !this.canInsertSemicolon() && this.eat(tt.arrow)) return this.parseArrowExpression(this.startNodeAt(startPos, startLoc), [id]) return id case tt.regexp: let value = this.value node = this.parseLiteral(value.value) node.regex = {pattern: value.pattern, flags: value.flags} return node case tt.num: case tt.string: return this.parseLiteral(this.value) case tt._null: case tt._true: case tt._false: node = this.startNode() node.value = this.type === tt._null ? null : this.type === tt._true node.raw = this.type.keyword this.next() return this.finishNode(node, "Literal") case tt.parenL: return this.parseParenAndDistinguishExpression(canBeArrow) case tt.bracketL: node = this.startNode() this.next() // check whether this is array comprehension or regular array if (this.options.ecmaVersion >= 7 && this.type === tt._for) { return this.parseComprehension(node, false) } node.elements = this.parseExprList(tt.bracketR, true, true, refDestructuringErrors) return this.finishNode(node, "ArrayExpression") case tt.braceL: return this.parseObj(false, refDestructuringErrors) case tt._function: node = this.startNode() this.next() return this.parseFunction(node, false) case tt._class: return this.parseClass(this.startNode(), false) case tt._new: return this.parseNew() case tt.backQuote: return this.parseTemplate() default: this.unexpected() } } pp.parseLiteral = function(value) { let node = this.startNode() node.value = value node.raw = this.input.slice(this.start, this.end) this.next() return this.finishNode(node, "Literal") } pp.parseParenExpression = function() { this.expect(tt.parenL) let val = this.parseExpression() this.expect(tt.parenR) return val } pp.parseParenAndDistinguishExpression = function(canBeArrow) { let startPos = this.start, startLoc = this.startLoc, val if (this.options.ecmaVersion >= 6) { this.next() if (this.options.ecmaVersion >= 7 && this.type === tt._for) { return this.parseComprehension(this.startNodeAt(startPos, startLoc), true) } let innerStartPos = this.start, innerStartLoc = this.startLoc let exprList = [], first = true let refDestructuringErrors = {shorthandAssign: 0, trailingComma: 0}, spreadStart, innerParenStart while (this.type !== tt.parenR) { first ? first = false : this.expect(tt.comma) if (this.type === tt.ellipsis) { spreadStart = this.start exprList.push(this.parseParenItem(this.parseRest())) break } else { if (this.type === tt.parenL && !innerParenStart) { innerParenStart = this.start } exprList.push(this.parseMaybeAssign(false, refDestructuringErrors, this.parseParenItem)) } } let innerEndPos = this.start, innerEndLoc = this.startLoc this.expect(tt.parenR) if (canBeArrow && !this.canInsertSemicolon() && this.eat(tt.arrow)) { this.checkPatternErrors(refDestructuringErrors, true) if (innerParenStart) this.unexpected(innerParenStart) return this.parseParenArrowList(startPos, startLoc, exprList) } if (!exprList.length) this.unexpected(this.lastTokStart) if (spreadStart) this.unexpected(spreadStart) this.checkExpressionErrors(refDestructuringErrors, true) if (exprList.length > 1) { val = this.startNodeAt(innerStartPos, innerStartLoc) val.expressions = exprList this.finishNodeAt(val, "SequenceExpression", innerEndPos, innerEndLoc) } else { val = exprList[0] } } else { val = this.parseParenExpression() } if (this.options.preserveParens) { let par = this.startNodeAt(startPos, startLoc) par.expression = val return this.finishNode(par, "ParenthesizedExpression") } else { return val } } pp.parseParenItem = function(item) { return item } pp.parseParenArrowList = function(startPos, startLoc, exprList) { return this.parseArrowExpression(this.startNodeAt(startPos, startLoc), exprList) } // New's precedence is slightly tricky. It must allow its argument to // be a `[]` or dot subscript expression, but not a call — at least, // not without wrapping it in parentheses. Thus, it uses the noCalls // argument to parseSubscripts to prevent it from consuming the // argument list. const empty = [] pp.parseNew = function() { let node = this.startNode() let meta = this.parseIdent(true) if (this.options.ecmaVersion >= 6 && this.eat(tt.dot)) { node.meta = meta node.property = this.parseIdent(true) if (node.property.name !== "target") this.raise(node.property.start, "The only valid meta property for new is new.target") if (!this.inFunction) this.raise(node.start, "new.target can only be used in functions") return this.finishNode(node, "MetaProperty") } let startPos = this.start, startLoc = this.startLoc node.callee = this.parseSubscripts(this.parseExprAtom(), startPos, startLoc, true) if (this.eat(tt.parenL)) node.arguments = this.parseExprList(tt.parenR, false) else node.arguments = empty return this.finishNode(node, "NewExpression") } // Parse template expression. pp.parseTemplateElement = function() { let elem = this.startNode() elem.value = { raw: this.input.slice(this.start, this.end).replace(/\r\n?/g, '\n'), cooked: this.value } this.next() elem.tail = this.type === tt.backQuote return this.finishNode(elem, "TemplateElement") } pp.parseTemplate = function() { let node = this.startNode() this.next() node.expressions = [] let curElt = this.parseTemplateElement() node.quasis = [curElt] while (!curElt.tail) { this.expect(tt.dollarBraceL) node.expressions.push(this.parseExpression()) this.expect(tt.braceR) node.quasis.push(curElt = this.parseTemplateElement()) } this.next() return this.finishNode(node, "TemplateLiteral") } // Parse an object literal or binding pattern. pp.parseObj = function(isPattern, refDestructuringErrors) { let node = this.startNode(), first = true, propHash = {} node.properties = [] this.next() while (!this.eat(tt.braceR)) { if (!first) { this.expect(tt.comma) if (this.afterTrailingComma(tt.braceR)) break } else first = false let prop = this.startNode(), isGenerator, startPos, startLoc if (this.options.ecmaVersion >= 6) { prop.method = false prop.shorthand = false if (isPattern || refDestructuringErrors) { startPos = this.start startLoc = this.startLoc } if (!isPattern) isGenerator = this.eat(tt.star) } this.parsePropertyName(prop) this.parsePropertyValue(prop, isPattern, isGenerator, startPos, startLoc, refDestructuringErrors) this.checkPropClash(prop, propHash) node.properties.push(this.finishNode(prop, "Property")) } return this.finishNode(node, isPattern ? "ObjectPattern" : "ObjectExpression") } pp.parsePropertyValue = function(prop, isPattern, isGenerator, startPos, startLoc, refDestructuringErrors) { if (this.eat(tt.colon)) { prop.value = isPattern ? this.parseMaybeDefault(this.start, this.startLoc) : this.parseMaybeAssign(false, refDestructuringErrors) prop.kind = "init" } else if (this.options.ecmaVersion >= 6 && this.type === tt.parenL) { if (isPattern) this.unexpected() prop.kind = "init" prop.method = true prop.value = this.parseMethod(isGenerator) } else if (this.options.ecmaVersion >= 5 && !prop.computed && prop.key.type === "Identifier" && (prop.key.name === "get" || prop.key.name === "set") && (this.type != tt.comma && this.type != tt.braceR)) { if (isGenerator || isPattern) this.unexpected() prop.kind = prop.key.name this.parsePropertyName(prop) prop.value = this.parseMethod(false) let paramCount = prop.kind === "get" ? 0 : 1 if (prop.value.params.length !== paramCount) { let start = prop.value.start if (prop.kind === "get") this.raise(start, "getter should have no params"); else this.raise(start, "setter should have exactly one param") } if (prop.kind === "set" && prop.value.params[0].type === "RestElement") this.raise(prop.value.params[0].start, "Setter cannot use rest params") } else if (this.options.ecmaVersion >= 6 && !prop.computed && prop.key.type === "Identifier") { prop.kind = "init" if (isPattern) { if (this.keywords.test(prop.key.name) || (this.strict ? this.reservedWordsStrictBind : this.reservedWords).test(prop.key.name)) this.raise(prop.key.start, "Binding " + prop.key.name) prop.value = this.parseMaybeDefault(startPos, startLoc, prop.key) } else if (this.type === tt.eq && refDestructuringErrors) { if (!refDestructuringErrors.shorthandAssign) refDestructuringErrors.shorthandAssign = this.start prop.value = this.parseMaybeDefault(startPos, startLoc, prop.key) } else { prop.value = prop.key } prop.shorthand = true } else this.unexpected() } pp.parsePropertyName = function(prop) { if (this.options.ecmaVersion >= 6) { if (this.eat(tt.bracketL)) { prop.computed = true prop.key = this.parseMaybeAssign() this.expect(tt.bracketR) return prop.key } else { prop.computed = false } } return prop.key = (this.type === tt.num || this.type === tt.string) ? this.parseExprAtom() : this.parseIdent(true) } // Initialize empty function node. pp.initFunction = function(node) { node.id = null if (this.options.ecmaVersion >= 6) { node.generator = false node.expression = false } } // Parse object or class method. pp.parseMethod = function(isGenerator) { let node = this.startNode() this.initFunction(node) this.expect(tt.parenL) node.params = this.parseBindingList(tt.parenR, false, false) if (this.options.ecmaVersion >= 6) node.generator = isGenerator this.parseFunctionBody(node, false) return this.finishNode(node, "FunctionExpression") } // Parse arrow function expression with given parameters. pp.parseArrowExpression = function(node, params) { this.initFunction(node) node.params = this.toAssignableList(params, true) this.parseFunctionBody(node, true) return this.finishNode(node, "ArrowFunctionExpression") } // Parse function body and check parameters. pp.parseFunctionBody = function(node, isArrowFunction) { let isExpression = isArrowFunction && this.type !== tt.braceL if (isExpression) { node.body = this.parseMaybeAssign() node.expression = true } else { // Start a new scope with regard to labels and the `inFunction` // flag (restore them to their old value afterwards). let oldInFunc = this.inFunction, oldInGen = this.inGenerator, oldLabels = this.labels this.inFunction = true; this.inGenerator = node.generator; this.labels = [] node.body = this.parseBlock(true) node.expression = false this.inFunction = oldInFunc; this.inGenerator = oldInGen; this.labels = oldLabels } // If this is a strict mode function, verify that argument names // are not repeated, and it does not try to bind the words `eval` // or `arguments`. if (this.strict || !isExpression && node.body.body.length && this.isUseStrict(node.body.body[0])) { let oldStrict = this.strict this.strict = true if (node.id) this.checkLVal(node.id, true) this.checkParams(node); this.strict = oldStrict } else if (isArrowFunction) { this.checkParams(node); } } // Checks function params for various disallowed patterns such as using "eval" // or "arguments" and duplicate parameters. pp.checkParams = function(node) { let nameHash = {}; for (let i = 0; i < node.params.length; i++) this.checkLVal(node.params[i], true, nameHash) }; // Parses a comma-separated list of expressions, and returns them as // an array. `close` is the token type that ends the list, and // `allowEmpty` can be turned on to allow subsequent commas with // nothing in between them to be parsed as `null` (which is needed // for array literals). pp.parseExprList = function(close, allowTrailingComma, allowEmpty, refDestructuringErrors) { let elts = [], first = true while (!this.eat(close)) { if (!first) { this.expect(tt.comma) if (this.type === close && refDestructuringErrors && !refDestructuringErrors.trailingComma) { refDestructuringErrors.trailingComma = this.lastTokStart } if (allowTrailingComma && this.afterTrailingComma(close)) break } else first = false let elt if (allowEmpty && this.type === tt.comma) elt = null else if (this.type === tt.ellipsis) elt = this.parseSpread(refDestructuringErrors) else elt = this.parseMaybeAssign(false, refDestructuringErrors) elts.push(elt) } return elts } // Parse the next token as an identifier. If `liberal` is true (used // when parsing properties), it will also convert keywords into // identifiers. pp.parseIdent = function(liberal) { let node = this.startNode() if (liberal && this.options.allowReserved == "never") liberal = false if (this.type === tt.name) { if (!liberal && (this.strict ? this.reservedWordsStrict : this.reservedWords).test(this.value) && (this.options.ecmaVersion >= 6 || this.input.slice(this.start, this.end).indexOf("\\") == -1)) this.raise(this.start, "The keyword '" + this.value + "' is reserved") node.name = this.value } else if (liberal && this.type.keyword) { node.name = this.type.keyword } else { this.unexpected() } this.next() return this.finishNode(node, "Identifier") } // Parses yield expression inside generator. pp.parseYield = function() { let node = this.startNode() this.next() if (this.type == tt.semi || this.canInsertSemicolon() || (this.type != tt.star && !this.type.startsExpr)) { node.delegate = false node.argument = null } else { node.delegate = this.eat(tt.star) node.argument = this.parseMaybeAssign() } return this.finishNode(node, "YieldExpression") } // Parses array and generator comprehensions. pp.parseComprehension = function(node, isGenerator) { node.blocks = [] while (this.type === tt._for) { let block = this.startNode() this.next() this.expect(tt.parenL) block.left = this.parseBindingAtom() this.checkLVal(block.left, true) this.expectContextual("of") block.right = this.parseExpression() this.expect(tt.parenR) node.blocks.push(this.finishNode(block, "ComprehensionBlock")) } node.filter = this.eat(tt._if) ? this.parseParenExpression() : null node.body = this.parseExpression() this.expect(isGenerator ? tt.parenR : tt.bracketR) node.generator = isGenerator return this.finishNode(node, "ComprehensionExpression") }