// AST walker module for Mozilla Parser API compatible trees // A simple walk is one where you simply specify callbacks to be // called on specific nodes. The last two arguments are optional. A // simple use would be // // walk.simple(myTree, { // Expression: function(node) { ... } // }); // // to do something with all expressions. All Parser API node types // can be used to identify node types, as well as Expression, // Statement, and ScopeBody, which denote categories of nodes. // // The base argument can be used to pass a custom (recursive) // walker, and state can be used to give this walked an initial // state. export function simple(node, visitors, base, state, override) { if (!base) base = exports.base ;(function c(node, st, override) { let type = override || node.type, found = visitors[type] base[type](node, st, c) if (found) found(node, st) })(node, state, override) } // An ancestor walk builds up an array of ancestor nodes (including // the current node) and passes them to the callback as the state parameter. export function ancestor(node, visitors, base, state) { if (!base) base = exports.base if (!state) state = [] ;(function c(node, st, override) { let type = override || node.type, found = visitors[type] if (node != st[st.length - 1]) { st = st.slice() st.push(node) } base[type](node, st, c) if (found) found(node, st) })(node, state) } // A recursive walk is one where your functions override the default // walkers. They can modify and replace the state parameter that's // threaded through the walk, and can opt how and whether to walk // their child nodes (by calling their third argument on these // nodes). export function recursive(node, state, funcs, base, override) { let visitor = funcs ? exports.make(funcs, base) : base ;(function c(node, st, override) { visitor[override || node.type](node, st, c) })(node, state, override) } function makeTest(test) { if (typeof test == "string") return type => type == test else if (!test) return () => true else return test } class Found { constructor(node, state) { this.node = node; this.state = state } } // Find a node with a given start, end, and type (all are optional, // null can be used as wildcard). Returns a {node, state} object, or // undefined when it doesn't find a matching node. export function findNodeAt(node, start, end, test, base, state) { test = makeTest(test) if (!base) base = exports.base try { ;(function c(node, st, override) { let type = override || node.type if ((start == null || node.start <= start) && (end == null || node.end >= end)) base[type](node, st, c) if ((start == null || node.start == start) && (end == null || node.end == end) && test(type, node)) throw new Found(node, st) })(node, state) } catch (e) { if (e instanceof Found) return e throw e } } // Find the innermost node of a given type that contains the given // position. Interface similar to findNodeAt. export function findNodeAround(node, pos, test, base, state) { test = makeTest(test) if (!base) base = exports.base try { ;(function c(node, st, override) { let type = override || node.type if (node.start > pos || node.end < pos) return base[type](node, st, c) if (test(type, node)) throw new Found(node, st) })(node, state) } catch (e) { if (e instanceof Found) return e throw e } } // Find the outermost matching node after a given position. export function findNodeAfter(node, pos, test, base, state) { test = makeTest(test) if (!base) base = exports.base try { ;(function c(node, st, override) { if (node.end < pos) return let type = override || node.type if (node.start >= pos && test(type, node)) throw new Found(node, st) base[type](node, st, c) })(node, state) } catch (e) { if (e instanceof Found) return e throw e } } // Find the outermost matching node before a given position. export function findNodeBefore(node, pos, test, base, state) { test = makeTest(test) if (!base) base = exports.base let max ;(function c(node, st, override) { if (node.start > pos) return let type = override || node.type if (node.end <= pos && (!max || max.node.end < node.end) && test(type, node)) max = new Found(node, st) base[type](node, st, c) })(node, state) return max } // Used to create a custom walker. Will fill in all missing node // type properties with the defaults. export function make(funcs, base) { if (!base) base = exports.base let visitor = {} for (var type in base) visitor[type] = base[type] for (var type in funcs) visitor[type] = funcs[type] return visitor } function skipThrough(node, st, c) { c(node, st) } function ignore(_node, _st, _c) {} // Node walkers. export const base = {} base.Program = base.BlockStatement = (node, st, c) => { for (let i = 0; i < node.body.length; ++i) c(node.body[i], st, "Statement") } base.Statement = skipThrough base.EmptyStatement = ignore base.ExpressionStatement = base.ParenthesizedExpression = (node, st, c) => c(node.expression, st, "Expression") base.IfStatement = (node, st, c) => { c(node.test, st, "Expression") c(node.consequent, st, "Statement") if (node.alternate) c(node.alternate, st, "Statement") } base.LabeledStatement = (node, st, c) => c(node.body, st, "Statement") base.BreakStatement = base.ContinueStatement = ignore base.WithStatement = (node, st, c) => { c(node.object, st, "Expression") c(node.body, st, "Statement") } base.SwitchStatement = (node, st, c) => { c(node.discriminant, st, "Expression") for (let i = 0; i < node.cases.length; ++i) { let cs = node.cases[i] if (cs.test) c(cs.test, st, "Expression") for (let j = 0; j < cs.consequent.length; ++j) c(cs.consequent[j], st, "Statement") } } base.ReturnStatement = base.YieldExpression = (node, st, c) => { if (node.argument) c(node.argument, st, "Expression") } base.ThrowStatement = base.SpreadElement = (node, st, c) => c(node.argument, st, "Expression") base.TryStatement = (node, st, c) => { c(node.block, st, "Statement") if (node.handler) { c(node.handler.param, st, "Pattern") c(node.handler.body, st, "ScopeBody") } if (node.finalizer) c(node.finalizer, st, "Statement") } base.WhileStatement = base.DoWhileStatement = (node, st, c) => { c(node.test, st, "Expression") c(node.body, st, "Statement") } base.ForStatement = (node, st, c) => { if (node.init) c(node.init, st, "ForInit") if (node.test) c(node.test, st, "Expression") if (node.update) c(node.update, st, "Expression") c(node.body, st, "Statement") } base.ForInStatement = base.ForOfStatement = (node, st, c) => { c(node.left, st, "ForInit") c(node.right, st, "Expression") c(node.body, st, "Statement") } base.ForInit = (node, st, c) => { if (node.type == "VariableDeclaration") c(node, st) else c(node, st, "Expression") } base.DebuggerStatement = ignore base.FunctionDeclaration = (node, st, c) => c(node, st, "Function") base.VariableDeclaration = (node, st, c) => { for (let i = 0; i < node.declarations.length; ++i) c(node.declarations[i], st) } base.VariableDeclarator = (node, st, c) => { c(node.id, st, "Pattern") if (node.init) c(node.init, st, "Expression") } base.Function = (node, st, c) => { if (node.id) c(node.id, st, "Pattern") for (let i = 0; i < node.params.length; i++) c(node.params[i], st, "Pattern") c(node.body, st, node.expression ? "ScopeExpression" : "ScopeBody") } // FIXME drop these node types in next major version // (They are awkward, and in ES6 every block can be a scope.) base.ScopeBody = (node, st, c) => c(node, st, "Statement") base.ScopeExpression = (node, st, c) => c(node, st, "Expression") base.Pattern = (node, st, c) => { if (node.type == "Identifier") c(node, st, "VariablePattern") else if (node.type == "MemberExpression") c(node, st, "MemberPattern") else c(node, st) } base.VariablePattern = ignore base.MemberPattern = skipThrough base.RestElement = (node, st, c) => c(node.argument, st, "Pattern") base.ArrayPattern = (node, st, c) => { for (let i = 0; i < node.elements.length; ++i) { let elt = node.elements[i] if (elt) c(elt, st, "Pattern") } } base.ObjectPattern = (node, st, c) => { for (let i = 0; i < node.properties.length; ++i) c(node.properties[i].value, st, "Pattern") } base.Expression = skipThrough base.ThisExpression = base.Super = base.MetaProperty = ignore base.ArrayExpression = (node, st, c) => { for (let i = 0; i < node.elements.length; ++i) { let elt = node.elements[i] if (elt) c(elt, st, "Expression") } } base.ObjectExpression = (node, st, c) => { for (let i = 0; i < node.properties.length; ++i) c(node.properties[i], st) } base.FunctionExpression = base.ArrowFunctionExpression = base.FunctionDeclaration base.SequenceExpression = base.TemplateLiteral = (node, st, c) => { for (let i = 0; i < node.expressions.length; ++i) c(node.expressions[i], st, "Expression") } base.UnaryExpression = base.UpdateExpression = (node, st, c) => { c(node.argument, st, "Expression") } base.BinaryExpression = base.LogicalExpression = (node, st, c) => { c(node.left, st, "Expression") c(node.right, st, "Expression") } base.AssignmentExpression = base.AssignmentPattern = (node, st, c) => { c(node.left, st, "Pattern") c(node.right, st, "Expression") } base.ConditionalExpression = (node, st, c) => { c(node.test, st, "Expression") c(node.consequent, st, "Expression") c(node.alternate, st, "Expression") } base.NewExpression = base.CallExpression = (node, st, c) => { c(node.callee, st, "Expression") if (node.arguments) for (let i = 0; i < node.arguments.length; ++i) c(node.arguments[i], st, "Expression") } base.MemberExpression = (node, st, c) => { c(node.object, st, "Expression") if (node.computed) c(node.property, st, "Expression") } base.ExportNamedDeclaration = base.ExportDefaultDeclaration = (node, st, c) => { if (node.declaration) c(node.declaration, st, node.type == "ExportNamedDeclaration" || node.declaration.id ? "Statement" : "Expression") if (node.source) c(node.source, st, "Expression") } base.ExportAllDeclaration = (node, st, c) => { c(node.source, st, "Expression") } base.ImportDeclaration = (node, st, c) => { for (let i = 0; i < node.specifiers.length; i++) c(node.specifiers[i], st) c(node.source, st, "Expression") } base.ImportSpecifier = base.ImportDefaultSpecifier = base.ImportNamespaceSpecifier = base.Identifier = base.Literal = ignore base.TaggedTemplateExpression = (node, st, c) => { c(node.tag, st, "Expression") c(node.quasi, st) } base.ClassDeclaration = base.ClassExpression = (node, st, c) => c(node, st, "Class") base.Class = (node, st, c) => { if (node.id) c(node.id, st, "Pattern") if (node.superClass) c(node.superClass, st, "Expression") for (let i = 0; i < node.body.body.length; i++) c(node.body.body[i], st) } base.MethodDefinition = base.Property = (node, st, c) => { if (node.computed) c(node.key, st, "Expression") c(node.value, st, "Expression") } base.ComprehensionExpression = (node, st, c) => { for (let i = 0; i < node.blocks.length; i++) c(node.blocks[i].right, st, "Expression") c(node.body, st, "Expression") }