You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pegjs/lib/compiler/passes/generate-bytecode.js

625 lines
15 KiB
JavaScript

"use strict";
var arrays = require("../../utils/arrays"),
objects = require("../../utils/objects"),
asts = require("../asts"),
visitor = require("../visitor"),
op = require("../opcodes"),
js = require("../js");
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
/* Generates bytecode.
*
* Instructions
* ============
*
* Stack Manipulation
* ------------------
*
* [0] PUSH c
*
* stack.push(consts[c]);
*
* [1] PUSH_UNDEFINED
*
* stack.push(undefined);
*
* [2] PUSH_NULL
*
* stack.push(null);
*
* [3] PUSH_FAILED
*
* stack.push(FAILED);
*
* [4] PUSH_EMPTY_ARRAY
*
* stack.push([]);
*
* [5] PUSH_CURR_POS
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(currPos);
*
* [6] POP
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.pop();
*
* [7] POP_CURR_POS
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* currPos = stack.pop();
*
* [8] POP_N n
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.pop(n);
*
* [9] NIP
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* value = stack.pop();
* stack.pop();
* stack.push(value);
*
* [10] APPEND
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* value = stack.pop();
* array = stack.pop();
* array.push(value);
* stack.push(array);
*
* [11] WRAP n
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(stack.pop(n));
*
* [12] TEXT
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(input.substring(stack.pop(), currPos));
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* Conditions and Loops
* --------------------
*
* [13] IF t, f
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (stack.top()) {
* interpret(ip + 3, ip + 3 + t);
* } else {
* interpret(ip + 3 + t, ip + 3 + t + f);
* }
*
* [14] IF_ERROR t, f
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (stack.top() === FAILED) {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
* interpret(ip + 3, ip + 3 + t);
* } else {
* interpret(ip + 3 + t, ip + 3 + t + f);
* }
*
* [15] IF_NOT_ERROR t, f
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (stack.top() !== FAILED) {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
* interpret(ip + 3, ip + 3 + t);
* } else {
* interpret(ip + 3 + t, ip + 3 + t + f);
* }
*
* [16] WHILE_NOT_ERROR b
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* while(stack.top() !== FAILED) {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
* interpret(ip + 2, ip + 2 + b);
* }
*
* Matching
* --------
*
* [17] MATCH_ANY a, f, ...
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (input.length > currPos) {
* interpret(ip + 3, ip + 3 + a);
* } else {
* interpret(ip + 3 + a, ip + 3 + a + f);
* }
*
* [18] MATCH_STRING s, a, f, ...
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (input.substr(currPos, consts[s].length) === consts[s]) {
* interpret(ip + 4, ip + 4 + a);
* } else {
* interpret(ip + 4 + a, ip + 4 + a + f);
* }
*
* [19] MATCH_STRING_IC s, a, f, ...
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (input.substr(currPos, consts[s].length).toLowerCase() === consts[s]) {
* interpret(ip + 4, ip + 4 + a);
* } else {
* interpret(ip + 4 + a, ip + 4 + a + f);
* }
*
* [20] MATCH_REGEXP r, a, f, ...
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* if (consts[r].test(input.charAt(currPos))) {
* interpret(ip + 4, ip + 4 + a);
* } else {
* interpret(ip + 4 + a, ip + 4 + a + f);
* }
*
* [21] ACCEPT_N n
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(input.substring(currPos, n));
* currPos += n;
*
* [22] ACCEPT_STRING s
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(consts[s]);
* currPos += consts[s].length;
*
* [23] FAIL e
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(FAILED);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
* fail(consts[e]);
*
* Calls
* -----
*
* [24] LOAD_SAVED_POS p
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* savedPos = stack[p];
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* [25] UPDATE_SAVED_POS
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* savedPos = currPos;
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* [26] CALL f, n, pc, p1, p2, ..., pN
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
Refine error handling further Before this commit, the |expected| and |error| functions didn't halt the parsing immediately, but triggered a regular match failure. After they were called, the parser could backtrack, try another branches, and only if no other branch succeeded, it triggered an exception with information possibly based on parameters passed to the |expected| or |error| function (this depended on positions where failures in other branches have occurred). While nice in theory, this solution didn't work well in practice. There were at least two problems: 1. Action expression could have easily triggered a match failure later in the input than the action itself. This resulted in the action-triggered failure to be shadowed by the expression-triggered one. Consider the following example: integer = digits:[0-9]+ { var result = parseInt(digits.join(""), 10); if (result % 2 === 0) { error("The number must be an odd integer."); return; } return result; } Given input "2", the |[0-9]+| expression would record a match failure at position 1 (an unsuccessful attempt to parse yet another digit after "2"). However, a failure triggered by the |error| call would occur at position 0. This problem could have been solved by silencing match failures in action expressions, but that would lead to severe performance problems (yes, I tried and measured). Other possible solutions are hacks which I didn't want to introduce into PEG.js. 2. Triggering a match failure in action code could have lead to unexpected backtracking. Consider the following example: class = "[" (charRange / char)* "]" charRange = begin:char "-" end:char { if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) { error("Invalid character range: " + begin + "-" + end + "."); } // ... } char = [a-zA-Z0-9_\-] Given input "[b-a]", the |charRange| rule would fail, but the parser would try the |char| rule and succeed repeatedly, resulting in "b-a" being parsed as a sequence of three |char|'s, which it is not. This problem could have been solved by using negative predicates, but that would complicate the grammar and still wouldn't get rid of unintuitive behavior. Given these problems I decided to change the semantics of the |expected| and |error| functions. They don't interact with regular match failure mechanism anymore, but they cause and immediate parse failure by throwing an exception. I think this is more intuitive behavior with less harmful side effects. The disadvantage of the new approach is that one can't backtrack from an action-triggered error. I don't see this as a big deal as I think this will be rarely needed and one can always use a semantic predicate as a workaround. Speed impact ------------ Before: 993.84 kB/s After: 998.05 kB/s Difference: 0.42% Size impact ----------- Before: 1019968 b After: 975434 b Difference: -4.37% (Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
11 years ago
* value = consts[f](stack[p1], ..., stack[pN]);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
* stack.pop(n);
* stack.push(value);
*
* Rules
* -----
*
* [27] RULE r
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* stack.push(parseRule(r));
*
* Failure Reporting
* -----------------
*
* [28] SILENT_FAILS_ON
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* silentFails++;
*
* [29] SILENT_FAILS_OFF
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
*
* silentFails--;
*/
function generateBytecode(ast) {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
var consts = [];
function addConst(value) {
var index = arrays.indexOf(consts, value);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
return index === -1 ? consts.push(value) - 1 : index;
}
function addFunctionConst(params, code) {
return addConst(
"function(" + params.join(", ") + ") {" + code + "}"
);
}
function buildSequence() {
return Array.prototype.concat.apply([], arguments);
}
function buildCondition(condCode, thenCode, elseCode) {
return condCode.concat(
[thenCode.length, elseCode.length],
thenCode,
elseCode
);
}
function buildLoop(condCode, bodyCode) {
return condCode.concat([bodyCode.length], bodyCode);
}
Refine error handling further Before this commit, the |expected| and |error| functions didn't halt the parsing immediately, but triggered a regular match failure. After they were called, the parser could backtrack, try another branches, and only if no other branch succeeded, it triggered an exception with information possibly based on parameters passed to the |expected| or |error| function (this depended on positions where failures in other branches have occurred). While nice in theory, this solution didn't work well in practice. There were at least two problems: 1. Action expression could have easily triggered a match failure later in the input than the action itself. This resulted in the action-triggered failure to be shadowed by the expression-triggered one. Consider the following example: integer = digits:[0-9]+ { var result = parseInt(digits.join(""), 10); if (result % 2 === 0) { error("The number must be an odd integer."); return; } return result; } Given input "2", the |[0-9]+| expression would record a match failure at position 1 (an unsuccessful attempt to parse yet another digit after "2"). However, a failure triggered by the |error| call would occur at position 0. This problem could have been solved by silencing match failures in action expressions, but that would lead to severe performance problems (yes, I tried and measured). Other possible solutions are hacks which I didn't want to introduce into PEG.js. 2. Triggering a match failure in action code could have lead to unexpected backtracking. Consider the following example: class = "[" (charRange / char)* "]" charRange = begin:char "-" end:char { if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) { error("Invalid character range: " + begin + "-" + end + "."); } // ... } char = [a-zA-Z0-9_\-] Given input "[b-a]", the |charRange| rule would fail, but the parser would try the |char| rule and succeed repeatedly, resulting in "b-a" being parsed as a sequence of three |char|'s, which it is not. This problem could have been solved by using negative predicates, but that would complicate the grammar and still wouldn't get rid of unintuitive behavior. Given these problems I decided to change the semantics of the |expected| and |error| functions. They don't interact with regular match failure mechanism anymore, but they cause and immediate parse failure by throwing an exception. I think this is more intuitive behavior with less harmful side effects. The disadvantage of the new approach is that one can't backtrack from an action-triggered error. I don't see this as a big deal as I think this will be rarely needed and one can always use a semantic predicate as a workaround. Speed impact ------------ Before: 993.84 kB/s After: 998.05 kB/s Difference: 0.42% Size impact ----------- Before: 1019968 b After: 975434 b Difference: -4.37% (Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
11 years ago
function buildCall(functionIndex, delta, env, sp) {
10 years ago
var params = arrays.map(objects.values(env), function(p) { return sp - p; });
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
Refine error handling further Before this commit, the |expected| and |error| functions didn't halt the parsing immediately, but triggered a regular match failure. After they were called, the parser could backtrack, try another branches, and only if no other branch succeeded, it triggered an exception with information possibly based on parameters passed to the |expected| or |error| function (this depended on positions where failures in other branches have occurred). While nice in theory, this solution didn't work well in practice. There were at least two problems: 1. Action expression could have easily triggered a match failure later in the input than the action itself. This resulted in the action-triggered failure to be shadowed by the expression-triggered one. Consider the following example: integer = digits:[0-9]+ { var result = parseInt(digits.join(""), 10); if (result % 2 === 0) { error("The number must be an odd integer."); return; } return result; } Given input "2", the |[0-9]+| expression would record a match failure at position 1 (an unsuccessful attempt to parse yet another digit after "2"). However, a failure triggered by the |error| call would occur at position 0. This problem could have been solved by silencing match failures in action expressions, but that would lead to severe performance problems (yes, I tried and measured). Other possible solutions are hacks which I didn't want to introduce into PEG.js. 2. Triggering a match failure in action code could have lead to unexpected backtracking. Consider the following example: class = "[" (charRange / char)* "]" charRange = begin:char "-" end:char { if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) { error("Invalid character range: " + begin + "-" + end + "."); } // ... } char = [a-zA-Z0-9_\-] Given input "[b-a]", the |charRange| rule would fail, but the parser would try the |char| rule and succeed repeatedly, resulting in "b-a" being parsed as a sequence of three |char|'s, which it is not. This problem could have been solved by using negative predicates, but that would complicate the grammar and still wouldn't get rid of unintuitive behavior. Given these problems I decided to change the semantics of the |expected| and |error| functions. They don't interact with regular match failure mechanism anymore, but they cause and immediate parse failure by throwing an exception. I think this is more intuitive behavior with less harmful side effects. The disadvantage of the new approach is that one can't backtrack from an action-triggered error. I don't see this as a big deal as I think this will be rarely needed and one can always use a semantic predicate as a workaround. Speed impact ------------ Before: 993.84 kB/s After: 998.05 kB/s Difference: 0.42% Size impact ----------- Before: 1019968 b After: 975434 b Difference: -4.37% (Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
11 years ago
return [op.CALL, functionIndex, delta, params.length].concat(params);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
}
function buildSimplePredicate(expression, negative, context) {
return buildSequence(
[op.PUSH_CURR_POS],
[op.SILENT_FAILS_ON],
generate(expression, {
sp: context.sp + 1,
env: objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
}),
[op.SILENT_FAILS_OFF],
buildCondition(
[negative ? op.IF_ERROR : op.IF_NOT_ERROR],
buildSequence(
[op.POP],
[negative ? op.POP : op.POP_CURR_POS],
[op.PUSH_UNDEFINED]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
),
buildSequence(
[op.POP],
[negative ? op.POP_CURR_POS : op.POP],
[op.PUSH_FAILED]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
)
)
);
}
function buildSemanticPredicate(code, negative, context) {
var functionIndex = addFunctionConst(objects.keys(context.env), code);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
return buildSequence(
[op.UPDATE_SAVED_POS],
Refine error handling further Before this commit, the |expected| and |error| functions didn't halt the parsing immediately, but triggered a regular match failure. After they were called, the parser could backtrack, try another branches, and only if no other branch succeeded, it triggered an exception with information possibly based on parameters passed to the |expected| or |error| function (this depended on positions where failures in other branches have occurred). While nice in theory, this solution didn't work well in practice. There were at least two problems: 1. Action expression could have easily triggered a match failure later in the input than the action itself. This resulted in the action-triggered failure to be shadowed by the expression-triggered one. Consider the following example: integer = digits:[0-9]+ { var result = parseInt(digits.join(""), 10); if (result % 2 === 0) { error("The number must be an odd integer."); return; } return result; } Given input "2", the |[0-9]+| expression would record a match failure at position 1 (an unsuccessful attempt to parse yet another digit after "2"). However, a failure triggered by the |error| call would occur at position 0. This problem could have been solved by silencing match failures in action expressions, but that would lead to severe performance problems (yes, I tried and measured). Other possible solutions are hacks which I didn't want to introduce into PEG.js. 2. Triggering a match failure in action code could have lead to unexpected backtracking. Consider the following example: class = "[" (charRange / char)* "]" charRange = begin:char "-" end:char { if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) { error("Invalid character range: " + begin + "-" + end + "."); } // ... } char = [a-zA-Z0-9_\-] Given input "[b-a]", the |charRange| rule would fail, but the parser would try the |char| rule and succeed repeatedly, resulting in "b-a" being parsed as a sequence of three |char|'s, which it is not. This problem could have been solved by using negative predicates, but that would complicate the grammar and still wouldn't get rid of unintuitive behavior. Given these problems I decided to change the semantics of the |expected| and |error| functions. They don't interact with regular match failure mechanism anymore, but they cause and immediate parse failure by throwing an exception. I think this is more intuitive behavior with less harmful side effects. The disadvantage of the new approach is that one can't backtrack from an action-triggered error. I don't see this as a big deal as I think this will be rarely needed and one can always use a semantic predicate as a workaround. Speed impact ------------ Before: 993.84 kB/s After: 998.05 kB/s Difference: 0.42% Size impact ----------- Before: 1019968 b After: 975434 b Difference: -4.37% (Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
11 years ago
buildCall(functionIndex, 0, context.env, context.sp),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
buildCondition(
[op.IF],
buildSequence(
[op.POP],
negative ? [op.PUSH_FAILED] : [op.PUSH_UNDEFINED]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
),
buildSequence(
[op.POP],
negative ? [op.PUSH_UNDEFINED] : [op.PUSH_FAILED]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
)
)
);
}
function buildAppendLoop(expressionCode) {
return buildLoop(
[op.WHILE_NOT_ERROR],
buildSequence([op.APPEND], expressionCode)
);
}
var generate = visitor.build({
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
grammar: function(node) {
arrays.each(node.rules, generate);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
node.consts = consts;
},
rule: function(node) {
node.bytecode = generate(node.expression, {
sp: -1, // stack pointer
env: { }, // mapping of label names to stack positions
action: null // action nodes pass themselves to children here
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
});
},
named: function(node, context) {
var nameIndex = addConst(
'{ type: "other", description: "' + js.stringEscape(node.name) + '" }'
);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
/*
* The code generated below is slightly suboptimal because |FAIL| pushes
* to the stack, so we need to stick a |POP| in front of it. We lack a
* dedicated instruction that would just report the failure and not touch
* the stack.
*/
return buildSequence(
[op.SILENT_FAILS_ON],
generate(node.expression, context),
[op.SILENT_FAILS_OFF],
buildCondition([op.IF_ERROR], [op.FAIL, nameIndex], [])
);
},
choice: function(node, context) {
function buildAlternativesCode(alternatives, context) {
return buildSequence(
generate(alternatives[0], {
sp: context.sp,
env: objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
}),
alternatives.length > 1
? buildCondition(
[op.IF_ERROR],
buildSequence(
[op.POP],
buildAlternativesCode(alternatives.slice(1), context)
),
[]
)
: []
);
}
return buildAlternativesCode(node.alternatives, context);
},
action: function(node, context) {
var env = objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
emitCall = node.expression.type !== "sequence"
|| node.expression.elements.length === 0,
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
expressionCode = generate(node.expression, {
sp: context.sp + (emitCall ? 1 : 0),
env: env,
action: node
}),
functionIndex = addFunctionConst(objects.keys(env), node.code);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
return emitCall
? buildSequence(
[op.PUSH_CURR_POS],
expressionCode,
buildCondition(
[op.IF_NOT_ERROR],
buildSequence(
[op.LOAD_SAVED_POS, 1],
Refine error handling further Before this commit, the |expected| and |error| functions didn't halt the parsing immediately, but triggered a regular match failure. After they were called, the parser could backtrack, try another branches, and only if no other branch succeeded, it triggered an exception with information possibly based on parameters passed to the |expected| or |error| function (this depended on positions where failures in other branches have occurred). While nice in theory, this solution didn't work well in practice. There were at least two problems: 1. Action expression could have easily triggered a match failure later in the input than the action itself. This resulted in the action-triggered failure to be shadowed by the expression-triggered one. Consider the following example: integer = digits:[0-9]+ { var result = parseInt(digits.join(""), 10); if (result % 2 === 0) { error("The number must be an odd integer."); return; } return result; } Given input "2", the |[0-9]+| expression would record a match failure at position 1 (an unsuccessful attempt to parse yet another digit after "2"). However, a failure triggered by the |error| call would occur at position 0. This problem could have been solved by silencing match failures in action expressions, but that would lead to severe performance problems (yes, I tried and measured). Other possible solutions are hacks which I didn't want to introduce into PEG.js. 2. Triggering a match failure in action code could have lead to unexpected backtracking. Consider the following example: class = "[" (charRange / char)* "]" charRange = begin:char "-" end:char { if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) { error("Invalid character range: " + begin + "-" + end + "."); } // ... } char = [a-zA-Z0-9_\-] Given input "[b-a]", the |charRange| rule would fail, but the parser would try the |char| rule and succeed repeatedly, resulting in "b-a" being parsed as a sequence of three |char|'s, which it is not. This problem could have been solved by using negative predicates, but that would complicate the grammar and still wouldn't get rid of unintuitive behavior. Given these problems I decided to change the semantics of the |expected| and |error| functions. They don't interact with regular match failure mechanism anymore, but they cause and immediate parse failure by throwing an exception. I think this is more intuitive behavior with less harmful side effects. The disadvantage of the new approach is that one can't backtrack from an action-triggered error. I don't see this as a big deal as I think this will be rarely needed and one can always use a semantic predicate as a workaround. Speed impact ------------ Before: 993.84 kB/s After: 998.05 kB/s Difference: 0.42% Size impact ----------- Before: 1019968 b After: 975434 b Difference: -4.37% (Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
11 years ago
buildCall(functionIndex, 1, env, context.sp + 2)
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
),
[]
),
[op.NIP]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
)
: expressionCode;
},
sequence: function(node, context) {
function buildElementsCode(elements, context) {
var processedCount, functionIndex;
if (elements.length > 0) {
processedCount = node.elements.length - elements.slice(1).length;
return buildSequence(
generate(elements[0], {
sp: context.sp,
env: context.env,
action: null
}),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
buildCondition(
[op.IF_NOT_ERROR],
buildElementsCode(elements.slice(1), {
sp: context.sp + 1,
env: context.env,
action: context.action
}),
buildSequence(
processedCount > 1 ? [op.POP_N, processedCount] : [op.POP],
[op.POP_CURR_POS],
[op.PUSH_FAILED]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
)
)
);
} else {
if (context.action) {
functionIndex = addFunctionConst(
objects.keys(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
context.action.code
);
return buildSequence(
[op.LOAD_SAVED_POS, node.elements.length],
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
buildCall(
functionIndex,
node.elements.length,
context.env,
context.sp
),
[op.NIP]
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
);
} else {
return buildSequence([op.WRAP, node.elements.length], [op.NIP]);
}
}
}
return buildSequence(
[op.PUSH_CURR_POS],
buildElementsCode(node.elements, {
sp: context.sp + 1,
env: context.env,
action: context.action
})
);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
},
labeled: function(node, context) {
var env = objects.clone(context.env);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
context.env[node.label] = context.sp + 1;
return generate(node.expression, {
sp: context.sp,
env: env,
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
});
},
text: function(node, context) {
return buildSequence(
[op.PUSH_CURR_POS],
generate(node.expression, {
sp: context.sp + 1,
env: objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
}),
buildCondition(
[op.IF_NOT_ERROR],
buildSequence([op.POP], [op.TEXT]),
[op.NIP]
)
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
);
},
simple_and: function(node, context) {
return buildSimplePredicate(node.expression, false, context);
},
simple_not: function(node, context) {
return buildSimplePredicate(node.expression, true, context);
},
optional: function(node, context) {
return buildSequence(
generate(node.expression, {
sp: context.sp,
env: objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
}),
buildCondition(
[op.IF_ERROR],
buildSequence([op.POP], [op.PUSH_NULL]),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
[]
)
);
},
zero_or_more: function(node, context) {
var expressionCode = generate(node.expression, {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
sp: context.sp + 1,
env: objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
});
return buildSequence(
[op.PUSH_EMPTY_ARRAY],
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
expressionCode,
buildAppendLoop(expressionCode),
[op.POP]
);
},
one_or_more: function(node, context) {
var expressionCode = generate(node.expression, {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
sp: context.sp + 1,
env: objects.clone(context.env),
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
action: null
});
return buildSequence(
[op.PUSH_EMPTY_ARRAY],
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
expressionCode,
buildCondition(
[op.IF_NOT_ERROR],
buildSequence(buildAppendLoop(expressionCode), [op.POP]),
buildSequence([op.POP], [op.POP], [op.PUSH_FAILED])
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
)
);
},
group: function(node, context) {
return generate(node.expression, {
sp: context.sp,
env: objects.clone(context.env),
action: null
});
},
semantic_and: function(node, context) {
return buildSemanticPredicate(node.code, false, context);
},
semantic_not: function(node, context) {
return buildSemanticPredicate(node.code, true, context);
},
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
rule_ref: function(node) {
return [op.RULE, asts.indexOfRule(ast, node.name)];
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
},
literal: function(node) {
var stringIndex, expectedIndex;
if (node.value.length > 0) {
stringIndex = addConst('"'
+ js.stringEscape(
node.ignoreCase ? node.value.toLowerCase() : node.value
)
+ '"'
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
);
expectedIndex = addConst([
'{',
'type: "literal",',
'value: "' + js.stringEscape(node.value) + '",',
'description: "' + js.stringEscape(node.rawText) + '"',
'}'
].join(' '));
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
/*
* For case-sensitive strings the value must match the beginning of the
* remaining input exactly. As a result, we can use |ACCEPT_STRING| and
* save one |substr| call that would be needed if we used |ACCEPT_N|.
*/
return buildCondition(
node.ignoreCase
? [op.MATCH_STRING_IC, stringIndex]
: [op.MATCH_STRING, stringIndex],
node.ignoreCase
? [op.ACCEPT_N, node.value.length]
: [op.ACCEPT_STRING, stringIndex],
[op.FAIL, expectedIndex]
);
} else {
stringIndex = addConst('""');
return [op.PUSH, stringIndex];
}
},
"class": function(node) {
var regexp, regexpIndex, expectedIndex;
if (node.parts.length > 0) {
regexp = '/^['
+ (node.inverted ? '^' : '')
+ arrays.map(node.parts, function(part) {
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
return part instanceof Array
? js.regexpClassEscape(part[0])
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
+ '-'
+ js.regexpClassEscape(part[1])
: js.regexpClassEscape(part);
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
}).join('')
+ ']/' + (node.ignoreCase ? 'i' : '');
} else {
/*
* IE considers regexps /[]/ and /[^]/ as syntactically invalid, so we
* translate them into euqivalents it can handle.
*/
regexp = node.inverted ? '/^[\\S\\s]/' : '/^(?!)/';
}
regexpIndex = addConst(regexp);
expectedIndex = addConst([
'{',
'type: "class",',
'value: "' + js.stringEscape(node.rawText) + '",',
'description: "' + js.stringEscape(node.rawText) + '"',
'}'
].join(' '));
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
return buildCondition(
[op.MATCH_REGEXP, regexpIndex],
[op.ACCEPT_N, 1],
[op.FAIL, expectedIndex]
);
},
any: function() {
var expectedIndex = addConst('{ type: "any", description: "any character" }');
Code generator rewrite This is a complete rewrite of the PEG.js code generator. Its goals are: 1. Allow optimizing the generated parser code for code size as well as for parsing speed. 2. Prepare ground for future optimizations and big features (like incremental parsing). 2. Replace the old template-based code-generation system with something more lightweight and flexible. 4. General code cleanup (structure, style, variable names, ...). New Architecture ---------------- The new code generator consists of two steps: * Bytecode generator -- produces bytecode for an abstract virtual machine * JavaScript generator -- produces JavaScript code based on the bytecode The abstract virtual machine is stack-based. Originally I wanted to make it register-based, but it turned out that all the code related to it would be more complex and the bytecode itself would be longer (because of explicit register specifications in instructions). The only downsides of the stack-based approach seem to be few small inefficiencies (see e.g. the |NIP| instruction), which seem to be insignificant. The new generator allows optimizing for parsing speed or code size (you can choose using the |optimize| option of the |PEG.buildParser| method or the --optimize/-o option on the command-line). When optimizing for size, the JavaScript generator emits the bytecode together with its constant table and a generic bytecode interpreter. Because the interpreter is small and the bytecode and constant table grow only slowly with size of the grammar, the resulting parser is also small. When optimizing for speed, the JavaScript generator just compiles the bytecode into JavaScript. The generated code is relatively efficient, so the resulting parser is fast. Internal Identifiers -------------------- As a small bonus, all internal identifiers visible to user code in the initializer, actions and predicates are prefixed by |peg$|. This lowers the chance that identifiers in user code will conflict with the ones from PEG.js. It also makes using any internals in user code ugly, which is a good thing. This solves GH-92. Performance ----------- The new code generator improved parsing speed and parser code size significantly. The generated parsers are now: * 39% faster when optimizing for speed * 69% smaller when optimizing for size (without minification) * 31% smaller when optimizing for size (with minification) (Parsing speed was measured using the |benchmark/run| script. Code size was measured by generating parsers for examples in the |examples| directory and adding up the file sizes. Minification was done by |uglify --ascii| in version 1.3.4.) Final Note ---------- This is just a beginning! The new code generator lays a foundation upon which many optimizations and improvements can (and will) be made. Stay tuned :-)
11 years ago
return buildCondition(
[op.MATCH_ANY],
[op.ACCEPT_N, 1],
[op.FAIL, expectedIndex]
);
}
});
generate(ast);
}
module.exports = generateBytecode;