2015-09-04 16:52:38 +02:00
|
|
|
/* global PEG */
|
2015-06-08 20:21:19 +02:00
|
|
|
|
|
|
|
"use strict";
|
|
|
|
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
describe("compiler pass |generateBytecode|", function() {
|
2013-01-13 11:17:44 +01:00
|
|
|
var pass = PEG.compiler.passes.generate.generateBytecode;
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
|
|
|
|
function bytecodeDetails(bytecode) {
|
|
|
|
return {
|
|
|
|
rules: [{ bytecode: bytecode }]
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
function constsDetails(consts) { return { consts: consts }; }
|
|
|
|
|
|
|
|
describe("for grammar", function() {
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST([
|
|
|
|
'a = "a"',
|
|
|
|
'b = "b"',
|
|
|
|
'c = "c"'
|
|
|
|
].join("\n"), {
|
|
|
|
rules: [
|
2015-08-18 10:57:50 +02:00
|
|
|
{ bytecode: [18, 0, 2, 2, 22, 0, 23, 1] },
|
|
|
|
{ bytecode: [18, 2, 2, 2, 22, 2, 23, 3] },
|
|
|
|
{ bytecode: [18, 4, 2, 2, 22, 4, 23, 5] }
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST([
|
|
|
|
'a = "a"',
|
|
|
|
'b = "b"',
|
|
|
|
'c = "c"'
|
|
|
|
].join("\n"), constsDetails([
|
|
|
|
'"a"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"b"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "b", description: "\\"b\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"c"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "c", description: "\\"c\\"" }'
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for rule", function() {
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST('start = "a"', bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
18, 0, 2, 2, 22, 0, 23, 1 // <expression>
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for named", function() {
|
|
|
|
var grammar = 'start "start" = "a"';
|
2014-06-07 14:20:53 +02:00
|
|
|
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
28, // SILENT_FAILS_ON
|
|
|
|
18, 1, 2, 2, 22, 1, 23, 2, // <expression>
|
|
|
|
29, // SILENT_FAILS_OFF
|
|
|
|
14, 2, 0, // IF_ERROR
|
|
|
|
23, 0 // * FAIL
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'{ type: "other", description: "start" }',
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for choice", function() {
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST('start = "a" / "b" / "c"', bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <alternatives[0]>
|
|
|
|
14, 21, 0, // IF_ERROR
|
|
|
|
6, // * POP
|
|
|
|
18, 2, 2, 2, 22, 2, 23, 3, // <alternatives[1]>
|
|
|
|
14, 9, 0, // IF_ERROR
|
|
|
|
6, // * POP
|
|
|
|
18, 4, 2, 2, 22, 4, 23, 5 // <alternatives[2]>
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for action", function() {
|
|
|
|
describe("without labels", function() {
|
2014-03-26 20:04:49 +01:00
|
|
|
var grammar = 'start = "a" { code }';
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
15, 6, 0, // IF_NOT_ERROR
|
|
|
|
24, 1, // * LOAD_SAVED_POS
|
|
|
|
26, 2, 1, 0, // CALL
|
|
|
|
9 // NIP
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2014-03-26 20:04:49 +01:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
|
|
|
'function() { code }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("with one label", function() {
|
|
|
|
var grammar = 'start = a:"a" { code }';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
15, 7, 0, // IF_NOT_ERROR
|
|
|
|
24, 1, // * LOAD_SAVED_POS
|
|
|
|
26, 2, 1, 1, 0, // CALL
|
|
|
|
9 // NIP
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
|
|
|
'function(a) { code }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("with multiple labels", function() {
|
|
|
|
var grammar = 'start = a:"a" b:"b" c:"c" { code }';
|
2014-06-07 14:20:53 +02:00
|
|
|
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <elements[0]>
|
|
|
|
15, 40, 3, // IF_NOT_ERROR
|
|
|
|
18, 2, 2, 2, 22, 2, 23, 3, // * <elements[1]>
|
|
|
|
15, 25, 4, // IF_NOT_ERROR
|
|
|
|
18, 4, 2, 2, 22, 4, 23, 5, // * <elements[2]>
|
|
|
|
15, 10, 4, // IF_NOT_ERROR
|
|
|
|
24, 3, // * LOAD_SAVED_POS
|
|
|
|
26, 6, 3, 3, 2, 1, 0, // CALL
|
|
|
|
9, // NIP
|
|
|
|
8, 3, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
8, 2, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
6, // * POP
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3 // PUSH_FAILED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"b"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "b", description: "\\"b\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"c"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "c", description: "\\"c\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'function(a, b, c) { code }'
|
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for sequence", function() {
|
2014-03-26 20:04:49 +01:00
|
|
|
var grammar = 'start = "a" "b" "c"';
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
|
2014-03-26 20:04:49 +01:00
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <elements[0]>
|
|
|
|
15, 33, 3, // IF_NOT_ERROR
|
|
|
|
18, 2, 2, 2, 22, 2, 23, 3, // * <elements[1]>
|
|
|
|
15, 18, 4, // IF_NOT_ERROR
|
|
|
|
18, 4, 2, 2, 22, 4, 23, 5, // * <elements[2]>
|
|
|
|
15, 3, 4, // IF_NOT_ERROR
|
|
|
|
11, 3, // * WRAP
|
|
|
|
9, // NIP
|
|
|
|
8, 3, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
8, 2, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
6, // * POP
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3 // PUSH_FAILED
|
2014-03-26 20:04:49 +01:00
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
|
2014-03-26 20:04:49 +01:00
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
|
|
|
'"b"',
|
|
|
|
'{ type: "literal", value: "b", description: "\\"b\\"" }',
|
|
|
|
'"c"',
|
|
|
|
'{ type: "literal", value: "c", description: "\\"c\\"" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for labeled", function() {
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST('start = a:"a"', bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
18, 0, 2, 2, 22, 0, 23, 1 // <expression>
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for text", function() {
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST('start = $"a"', bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
15, 2, 1, // IF_NOT_ERROR
|
|
|
|
6, // * POP
|
|
|
|
12, // TEXT
|
|
|
|
9 // * NIP
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for simple_and", function() {
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
var grammar = 'start = &"a"';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
28, // SILENT_FAILS_ON
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
29, // SILENT_FAILS_OFF
|
|
|
|
15, 3, 3, // IF_NOT_ERROR
|
|
|
|
6, // * POP
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
1, // PUSH_UNDEFINED
|
|
|
|
6, // * POP
|
|
|
|
6, // POP
|
|
|
|
3 // PUSH_FAILED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for simple_not", function() {
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
var grammar = 'start = !"a"';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
28, // SILENT_FAILS_ON
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
29, // SILENT_FAILS_OFF
|
|
|
|
14, 3, 3, // IF_ERROR
|
|
|
|
6, // * POP
|
|
|
|
6, // POP
|
|
|
|
1, // PUSH_UNDEFINED
|
|
|
|
6, // * POP
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3 // PUSH_FAILED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:06:42 +02:00
|
|
|
describe("for optional", function() {
|
|
|
|
var grammar = 'start = "a"?';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
14, 2, 0, // IF_ERROR
|
|
|
|
6, // * POP
|
|
|
|
2 // PUSH_NULL
|
2014-06-07 14:06:42 +02:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for zero_or_more", function() {
|
2014-06-07 14:06:42 +02:00
|
|
|
var grammar = 'start = "a"*';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
4, // PUSH_EMPTY_ARRAY
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
16, 9, // WHILE_NOT_ERROR
|
|
|
|
10, // * APPEND
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
6 // POP
|
2014-06-07 14:06:42 +02:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for one_or_more", function() {
|
2014-06-07 14:06:42 +02:00
|
|
|
var grammar = 'start = "a"+';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
4, // PUSH_EMPTY_ARRAY
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
15, 12, 3, // IF_NOT_ERROR
|
|
|
|
16, 9, // * WHILE_NOT_ERROR
|
|
|
|
10, // * APPEND
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <expression>
|
|
|
|
6, // POP
|
|
|
|
6, // * POP
|
|
|
|
6, // POP
|
|
|
|
3 // PUSH_FAILED
|
2014-06-07 14:06:42 +02:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for semantic_and", function() {
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
describe("without labels", function() {
|
|
|
|
var grammar = 'start = &{ code }';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
25, // UPDATE_SAVED_POS
|
|
|
|
26, 0, 0, 0, // CALL
|
|
|
|
13, 2, 2, // IF
|
|
|
|
6, // * POP
|
|
|
|
1, // PUSH_UNDEFINED
|
|
|
|
6, // * POP
|
|
|
|
3 // PUSH_FAILED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(
|
|
|
|
grammar,
|
2014-05-11 16:23:04 +02:00
|
|
|
constsDetails(['function() { code }'])
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
);
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("with labels", function() {
|
|
|
|
var grammar = 'start = a:"a" b:"b" c:"c" &{ code }';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <elements[0]>
|
|
|
|
15, 55, 3, // IF_NOT_ERROR
|
|
|
|
18, 2, 2, 2, 22, 2, 23, 3, // * <elements[1]>
|
|
|
|
15, 40, 4, // IF_NOT_ERROR
|
|
|
|
18, 4, 2, 2, 22, 4, 23, 5, // * <elements[2]>
|
|
|
|
15, 25, 4, // IF_NOT_ERROR
|
|
|
|
25, // * UPDATE_SAVED_POS
|
|
|
|
26, 6, 0, 3, 2, 1, 0, // CALL
|
|
|
|
13, 2, 2, // IF
|
|
|
|
6, // * POP
|
|
|
|
1, // PUSH_UNDEFINED
|
|
|
|
6, // * POP
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
15, 3, 4, // IF_NOT_ERROR
|
|
|
|
11, 4, // * WRAP
|
|
|
|
9, // NIP
|
|
|
|
8, 4, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
8, 3, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
8, 2, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
6, // * POP
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3 // PUSH_FAILED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"b"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "b", description: "\\"b\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"c"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "c", description: "\\"c\\"" }',
|
2014-05-11 16:23:04 +02:00
|
|
|
'function(a, b, c) { code }'
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for semantic_not", function() {
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
describe("without labels", function() {
|
|
|
|
var grammar = 'start = !{ code }';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
25, // UPDATE_SAVED_POS
|
|
|
|
26, 0, 0, 0, // CALL
|
|
|
|
13, 2, 2, // IF
|
|
|
|
6, // * POP
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
6, // * POP
|
|
|
|
1 // PUSH_UNDEFINED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(
|
|
|
|
grammar,
|
2014-05-11 16:23:04 +02:00
|
|
|
constsDetails(['function() { code }'])
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
);
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("with labels", function() {
|
|
|
|
var grammar = 'start = a:"a" b:"b" c:"c" !{ code }';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
5, // PUSH_CURR_POS
|
|
|
|
18, 0, 2, 2, 22, 0, 23, 1, // <elements[0]>
|
|
|
|
15, 55, 3, // IF_NOT_ERROR
|
|
|
|
18, 2, 2, 2, 22, 2, 23, 3, // * <elements[1]>
|
|
|
|
15, 40, 4, // IF_NOT_ERROR
|
|
|
|
18, 4, 2, 2, 22, 4, 23, 5, // * <elements[2]>
|
|
|
|
15, 25, 4, // IF_NOT_ERROR
|
|
|
|
25, // * UPDATE_SAVED_POS
|
|
|
|
26, 6, 0, 3, 2, 1, 0, // CALL
|
|
|
|
13, 2, 2, // IF
|
|
|
|
6, // * POP
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
6, // * POP
|
|
|
|
1, // PUSH_UNDEFINED
|
|
|
|
15, 3, 4, // IF_NOT_ERROR
|
|
|
|
11, 4, // * WRAP
|
|
|
|
9, // NIP
|
|
|
|
8, 4, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
8, 3, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
8, 2, // * POP_N
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3, // PUSH_FAILED
|
|
|
|
6, // * POP
|
|
|
|
7, // POP_CURR_POS
|
|
|
|
3 // PUSH_FAILED
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"b"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "b", description: "\\"b\\"" }',
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
'"c"',
|
2013-08-28 19:33:21 +02:00
|
|
|
'{ type: "literal", value: "c", description: "\\"c\\"" }',
|
2014-05-11 16:23:04 +02:00
|
|
|
'function(a, b, c) { code }'
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
2014-06-07 14:17:11 +02:00
|
|
|
describe("for rule_ref", function() {
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST([
|
|
|
|
'start = other',
|
|
|
|
'other = "other"'
|
|
|
|
].join("\n"), {
|
|
|
|
rules: [
|
|
|
|
{
|
2015-08-18 10:57:50 +02:00
|
|
|
bytecode: [27, 1] // RULE
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
},
|
|
|
|
{ }
|
|
|
|
]
|
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for literal", function() {
|
|
|
|
describe("empty", function() {
|
|
|
|
var grammar = 'start = ""';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
|
|
|
0, 0 // PUSH
|
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, constsDetails(['""']));
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("non-empty case-sensitive", function() {
|
|
|
|
var grammar = 'start = "a"';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
18, 0, 2, 2, // MATCH_STRING
|
|
|
|
22, 0, // * ACCEPT_STRING
|
|
|
|
23, 1 // * FAIL
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
|
|
|
'{ type: "literal", value: "a", description: "\\"a\\"" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("non-empty case-insensitive", function() {
|
|
|
|
var grammar = 'start = "A"i';
|
|
|
|
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
19, 0, 2, 2, // MATCH_STRING_IC
|
|
|
|
21, 1, // * ACCEPT_N
|
|
|
|
23, 1 // * FAIL
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(grammar, constsDetails([
|
|
|
|
'"a"',
|
2015-09-18 19:56:05 +02:00
|
|
|
'{ type: "literal", value: "A", description: "\\"A\\"i" }'
|
2013-08-28 19:33:21 +02:00
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for class", function() {
|
|
|
|
it("generates correct bytecode", function() {
|
|
|
|
expect(pass).toChangeAST('start = [a]', bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
20, 0, 2, 2, // MATCH_REGEXP
|
|
|
|
21, 1, // * ACCEPT_N
|
|
|
|
23, 1 // * FAIL
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("non-empty non-inverted case-sensitive", function() {
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST('start = [a]', constsDetails([
|
|
|
|
'/^[a]/',
|
|
|
|
'{ type: "class", value: "[a]", description: "[a]" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("non-empty inverted case-sensitive", function() {
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST('start = [^a]', constsDetails([
|
|
|
|
'/^[^a]/',
|
|
|
|
'{ type: "class", value: "[^a]", description: "[^a]" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("non-empty non-inverted case-insensitive", function() {
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST('start = [a]i', constsDetails([
|
|
|
|
'/^[a]/i',
|
|
|
|
'{ type: "class", value: "[a]i", description: "[a]i" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("non-empty complex", function() {
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST('start = [ab-def-hij-l]', constsDetails([
|
|
|
|
'/^[ab-def-hij-l]/',
|
|
|
|
'{ type: "class", value: "[ab-def-hij-l]", description: "[ab-def-hij-l]" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("empty non-inverted", function() {
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST('start = []', constsDetails([
|
|
|
|
'/^(?!)/',
|
|
|
|
'{ type: "class", value: "[]", description: "[]" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("empty inverted", function() {
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST('start = [^]', constsDetails([
|
|
|
|
'/^[\\S\\s]/',
|
|
|
|
'{ type: "class", value: "[^]", description: "[^]" }'
|
|
|
|
]));
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|
|
|
|
|
|
|
|
describe("for any", function() {
|
|
|
|
var grammar = 'start = .';
|
|
|
|
|
|
|
|
it("generates bytecode", function() {
|
|
|
|
expect(pass).toChangeAST(grammar, bytecodeDetails([
|
2015-08-18 10:57:50 +02:00
|
|
|
17, 2, 2, // MATCH_ANY
|
|
|
|
21, 1, // * ACCEPT_N
|
|
|
|
23, 0 // * FAIL
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
]));
|
|
|
|
});
|
|
|
|
|
|
|
|
it("defines correct constants", function() {
|
2013-08-28 19:33:21 +02:00
|
|
|
expect(pass).toChangeAST(
|
|
|
|
grammar,
|
|
|
|
constsDetails(['{ type: "any", description: "any character" }'])
|
|
|
|
);
|
Code generator rewrite
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
2013-01-01 15:15:37 +01:00
|
|
|
});
|
|
|
|
});
|
|
|
|
});
|