Also added few missing |hasOwnProperty| calls that JSHint didn't detect
because it only looks whether there is an |if| statement wrapping the
loop body.
Fixes the following JSHint errors:
bin/pegjs: line 66, col 14, 'extraOptions' used out of scope.
bin/pegjs: line 70, col 19, 'extraOptions' used out of scope.
bin/pegjs: line 71, col 20, 'extraOptions' used out of scope.
bin/pegjs: line 80, col 10, Wrap the /regexp/ literal in parens to disambiguate the slash operator.
bin/pegjs: line 128, col 43, Missing semicolon.
bin/pegjs: line 128, col 45, Don't make functions within a loop.
bin/pegjs: line 150, col 13, Redefinition of 'module'.
bin/pegjs: line 217, col 34, Expected '===' and instead saw '=='.
bin/pegjs: line 243, col 44, 'source' used out of scope.
bin/pegjs: line 243, col 61, 'source' used out of scope.
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
Getting rid of the |trackLineAndColumn| simplifies the code generator
(by unifying two paths in the code).
The |line| and |column| functions currently always compute all the
position info from scratch, which is horribly ineffective. This will be
improved in later commit(s).
Before this commit, |PEG.buildParser| always returned a parser object.
The only way to get its source code was to call the |toSource| method on
it. While this method worked for parsers produced by |PEG.buildParser|
directly, it didn't work for parsers instantiated by executing their
source code. In other words, it was unreliable.
This commit remvoes the |toSource| method on generated parsers and
introduces a new |output| option to |PEG.buildParser|. It allows callers
to specify whether they want to get back the parser object
(|options.output === "parser"|) or its source code (|options.output ===
"source"|). This is much better and more reliable API.
Before this commit, generated parser were able to start parsing from any
rule. This was nice, but it made rule code inlining impossible.
Since this commit, the list of allowed start rules has to be specified
explicitly using the |allowedStartRules| option of the |PEG.buildParser|
method (or the --allowed-start-rule option on the command-line). These
rules will be excluded from inlining when it's implemented.
While |process.openStdin| is not officially deprecated, it's no longer
documented and just using |process.stdin| and resuming it seems to be
the official way.
The previous default name was "exports.parser". This meant that to use
the generated parser in Node.js, you had to use code like this:
var parser = require("./my-cool-parser").parser;
parser.parse(...);
Now you can shorten it a bit:
var parser = require("./my-cool-parser");
parser.parse(...);
The shorter version makes sense since no other objects except the parser
are exported from the module.
The source code is now in the src directory. The library needs to be
built using "rake", which creates the lib/peg.js file by combining the
source files.
Before this change, the start rule was the one named "start" and there
was an option to override that. This is now impossible.
The goal of this change is to contain all information for the parser
generation in the grammar itself.
In the future, some override directive for the start rule (like Bison's
"%start") may be added to the grammar.
Similar issue exists on Windows too (they have symlinks since Vista), but I
could not find how to dereference symlinks from batch files, so I did not fix
it. I guess this does not matter much given how little the symlinks are used in
the Windows world.
Closes#1.
This and also speeds up the benchmark suite execution by 7.83 % on V8.
Detailed results (benchmark suite totals):
---------------------------------
Test # Before After
---------------------------------
1 26.17 kB/s 28.16 kB/s
2 26.05 kB/s 28.16 kB/s
3 25.99 kB/s 28.10 kB/s
4 26.13 kB/s 28.11 kB/s
5 26.14 kB/s 28.07 kB/s
---------------------------------
Average 26.10 kB/s 28.14 kB/s
---------------------------------
Mozilla/5.0 (X11; U; Linux i686; en-US) AppleWebKit/533.2 (KHTML, like Gecko) Chrome/5.0.342.7 Safari/533.2