Replace |line|, |column|, and |offset| properties of |SyntaxError| with
the |location| property. It contains an object similar to the one
returned by the |location| function available in action code:
{
start: { offset: 23, line: 5, column: 6 },
end: { offset: 25, line: 5, column: 8 }
}
For syntax errors produced in the middle of the input, |start| refers to
the first unparsed character and |end| refers to the character behind it
(meaning the span is 1 character). This corresponds to the portion of
the input in the |found| property.
For syntax errors produced the end of the input, both |start| and |end|
refer to a character past the end of the input (meaning the span is 0
characters).
For syntax errors produced by calling |expected| or |error| functions in
action code the location info is the same as the |location| function
would return.
Preform the following renames:
* |reportedPos| -> |savedPos| (abstract machine variable)
* |peg$reportedPos| -> |peg$savedPos| (variable in generated code)
* |REPORT_SAVED_POS| -> |LOAD_SAVED_POS| (instruction)
* |REPORT_CURR_POS| -> |UPDATE_SAVED_POS| (instruction)
The idea is that the name |reportedPos| is no longer accurate after the
|location| change (seea the previous commit) because now both
|reportedPos| and |currPos| are reported to user code. Renaming to
|savedPos| resolves this inaccuracy.
There is probably some better name for the concept than quite generic
|savedPos|, but it doesn't come to me.
Replace |line|, |column|, and |offset| functions with the |location|
function. It returns an object like this:
{
start: { offset: 23, line: 5, column: 6 },
end: { offset: 25, line: 5, column: 8 }
}
In actions, |start| refers to the position at the beginning of action's
expression and |end| refers to the position after the end of action's
expression. This allows one to easily add location info e.g. to AST
nodes created in actions.
In predicates, both |start| and |end| refer to the current position.
Fixes#246.
Beside the recursion detector, the visitor will also be used by infinite
loop detector.
Note the newly created |asts.matchesEmpty| function re-creates the
visitor each time it is called, which makes it slower than necessary.
This could have been worked around in various ways but I chose to defer
that optimization because real-world performance impact is small.
So far, left recursion detector assumed that left recursion occurs only
when the recursive rule is at the very left-hand side of rule's
expression:
start = start
This didn't catch cases like this:
start = "a"? start
In general, if a rule reference can be reached without consuming any
input, it can lead to left recursion. This commit fixes the detector to
consider that.
Fixes#190.
Parsers can now be generated with support for tracing using the --trace
CLI option or a boolean |trace| option to |PEG.buildParser|. This makes
them trace their progress, which can be useful for debugging. Parsers
generated with tracing support are called "tracing parsers".
When a tracing parser executes, by default it traces the rules it enters
and exits by writing messages to the console. For example, a parser
built from this grammar:
start = a / b
a = "a"
b = "b"
will write this to the console when parsing input "b":
1:1 rule.enter start
1:1 rule.enter a
1:1 rule.fail a
1:1 rule.enter b
1:2 rule.match b
1:2 rule.match start
You can customize tracing by passing a custom *tracer* to parser's
|parse| method using the |tracer| option:
parser.parse(input, { trace: tracer });
This will replace the built-in default tracer (which writes to the
console) by the tracer you supplied.
The tracer must be an object with a |trace| method. This method is
called each time a tracing event happens. It takes one argument which is
an object describing the tracing event.
Currently, three events are supported:
* rule.enter -- triggered when a rule is entered
* rule.match -- triggered when a rule matches successfully
* rule.fail -- triggered when a rule fails to match
These events are triggered in nested pairs -- for each rule.enter event
there is a matching rule.match or rule.fail event.
The event object passed as an argument to |trace| contains these
properties:
* type -- event type
* rule -- name of the rule the event is related to
* offset -- parse position at the time of the event
* line -- line at the time of the event
* column -- column at the time of the event
* result -- rule's match result (only for rule.match event)
The whole tracing API is somewhat experimental (which is why it isn't
documented properly yet) and I expect it will evolve over time as
experience is gained.
The default tracer is also somewhat bare-bones. I hope that PEG.js user
community will develop more sophisticated tracers over time and I'll be
able to integrate their best ideas into the default tracer.
Rename |generateCache{Header,Footer}| to |generateRule{Header,Footer}|
and change their responsibility to generate overall header/footer of a
rule function (when optimizing for speed) or the |peg$parseRule|
function (when optimizing for speed). This creates a natural place where
to generate tracing code (coming soon).
Action and predicate code can now see variables defined in expressions
"above" them.
Based on a pull request by Bryon Vandiver (@asterick):
https://github.com/pegjs/pegjs/pull/180Fixes#316.
The |visitor.build| function now supplies default visit functions for
visitors it builds. These functions don't do anything beside traversing
the tree and passing arguments around to child visit functions.
Having the default visit functions allowed to simplify several visitors.
The TEXT instruction now replaces position at the top of the stack with
the input from that position until the current position. This is simpler
and cleaner semantics than the previous one, where TEXT also popped an
additional value from the stack and kept the position there.
Implement the following bytecode instructions:
* PUSH_UNDEFINED
* PUSH_NULL
* PUSH_FAILED
* PUSH_EMPTY_ARRAY
These instructions push simple JavaSccript values to the stack directly,
without going through constants. This makes the bytecode slightly
shorter and the bytecode generator somewhat simpler.
Also note that PUSH_EMPTY_ARRAY allows us to avoid a hack which protects
the [] constant from modification.
The |stringEscape| function both in lib/compiler/javascript.js and in
generated parsers didn't escape characters in the U+0100..U+107F and
U+1000..U+107F ranges.
Split lib/utils.js into multiple files. Some of the functions were
generic, these were moved into files in lib/utils. Other funtions were
specific for the compiler, these were moved to files in lib/compiler.
This commit only moves functions around -- there is no renaming and
cleanup performed. Both will come later.
Modules now generally store the exported object in a named variable or
function first and only assign |module.exports| at the very end. This is
a difference when compared to style used until now, where most modules
started with a |module.exports| assignment.
I think the explicit name helps readability and understandability.
Initializer code is usually indented and this indentation is carried
over to generated code. This resulted in a piece of indented code in the
middle of the parser.
This commit wraps initializer code in |{...}|, which makes indentation
in generated parsers look a bit more natural.
The action/predicate code didn't have access to the parser object. This
was mostly a side effect actions/predicates being implemented as nested
functions, in which |this| is a reference to the global object (an ugly
JavaScript quirk). The initializer, being implemented differently, had
access to the parser object via |this|, but this was not documented.
Because having access to the parser object can be useful, this commits
introduces a new |parser| variable which holds a reference to it, is
visible in action/predicate/initializer code, and is properly
documented.
See also:
https://groups.google.com/forum/#!topic/pegjs/Na7YWnz6Bmg
This is mostly done for consistency with the JavaScript example grammar,
from which the |Identifier| rule is taken from. See the previous commit
for details.
Instead of matching segments between blocks character by character,
match them as a whole. Also align the style with other similar rules
(e.g. the comment ones).
Before this commit, line continuations in character classes contributed
an empty string to the list of characters and character ranges matched
by a class. While this didn't lead to a buggy behavior with the current
code generator, the AST was wrong and the problem could have caused bugs
later.
This commit fixes the problem.
Semantic predicates are kind of |PrimaryExpression|, not kind of
|PrefixedExpression|. Therefore I extracted a rule for them and
referenced it from the |PrimaryExpression|.
Initializer and rules are now separated in a similar way as JavaScript
statements -- either by a semicolon or a line terminator, possibly with
whitespace and comments mixed in.
One consequence is that the grammars like this are now illegal:
foo = "a" bar = "b"
A semicolon needs to be inserted between the rules:
foo = "a";bar = "b"
I consider this a good change as the now-illegal syntax was somewhat
confusing.
This makes the |Primary| rule a bit more tidy. Also, matching the |.|
character really belongs to the lexical part of the grammar, next to
literals and character classes.
* Rename the |Action| rule to |CodeBlock| (it better describes what
the rule matches).
* Implement the rule in a simpler way and move it after more basic
lexical elements.
This change has two side effects:
* Label names can no longer be JavaScript reserved words.
* |$| is allowed again in label names. However, because of the
preference rules, names starting with it will be usually parsed as a
text operator followed by another identifier (denoting a rule
reference or label name).
Before this commit, whitespace was handled at the lexical level by
making tokens consume any whitespace coming after them. This was
accomplished by appending |__| to every token rule.
This commit changes whitespace handling to be more explicit. Tokens no
longer consume whitespace coming after them and syntactic rules have to
cope with it. While this slightly complicates the syntactic grammar, I
think it's a cleaner way. Moreover, it is what JavaScript example
grammar does.
One small side-effect of thich change is that the grammar is now
stand-alone (it doesn't require utils.js anymore).
When rule names are capitalized, it's easier to visually distinguish
them from non-capitalized label names. Moreover, I use capitalized rule
names in all my grammars these days.
Before this commit, a line continuation (backslash followed by a line
terminator character) contributed a character to a string or a character
class it was used in. In JavaScript and many other languages, line
continuation doesn't contribute anything.
This commit aligns PEG.js line continuation behavior with JavaScript.
Before this commit, the value of the |rawText| property of "class" AST
nodes was created in a hackish way from processed input and it didn't
always exactly represent the actual input text.
This commit changes the code so that the value of the |rawText| property
is created using the |text| function. This is a clean way which also
resolves the exact representation problem.
Also added few missing |hasOwnProperty| calls that JSHint didn't detect
because it only looks whether there is an |if| statement wrapping the
loop body.
Fixes the following JSHint error:
lib/compiler/passes/generate-bytecode.js: line 334, col 71, Expected an assignment or function call and instead saw an expression.
The one-parameter |Array.prototype.splice| call is a SpiderMonkey
extension. Apparently, IE doesn't implement it (unlike other supported
browsers), so we need to replace it with two-parameter version.
In case the generated parser parsed successfully part of input and left
some input unparsed (trailing input), the error message produced was
sometimes wrong. The code worked correctly only if there were no match
failures in the successfully parsed part (highly unlikely).
This commit fixes things by explicitly triggering a match failure with the
following expectation at the end of the successfully parsed part of the
input:
peg$fail({ type: "end", description: "end of input" });
This change also made it possible to simplify the |buildMessage|
function, which can now ignore the case of no expectations.
Fixes#119.
There are two invariants in generated bytecode related to the stack:
1. Branches of a condition must move the stack pointer in the same way.
2. Body of a loop can't move the stack pointer.
These invariants were always true, but they were not checked. Now we
check them at least when compiling with optimization for speed, because
there we analyze the stack pointer movements statically.
The error check was useful when actions could have returned |null| to
trigger a match failure. This is no longer supported so the check isn't
needed anymore.
Speed impact
------------
Before: 1022.70 kB/s
After: 1035.45 kB/s
Difference: 1.24%
Size impact
-----------
Before: 975434 b
After: 931540 b
Difference: -4.50%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
Before this commit, the |expected| and |error| functions didn't halt the
parsing immediately, but triggered a regular match failure. After they
were called, the parser could backtrack, try another branches, and only
if no other branch succeeded, it triggered an exception with information
possibly based on parameters passed to the |expected| or |error|
function (this depended on positions where failures in other branches
have occurred).
While nice in theory, this solution didn't work well in practice. There
were at least two problems:
1. Action expression could have easily triggered a match failure later
in the input than the action itself. This resulted in the
action-triggered failure to be shadowed by the expression-triggered
one.
Consider the following example:
integer = digits:[0-9]+ {
var result = parseInt(digits.join(""), 10);
if (result % 2 === 0) {
error("The number must be an odd integer.");
return;
}
return result;
}
Given input "2", the |[0-9]+| expression would record a match
failure at position 1 (an unsuccessful attempt to parse yet another
digit after "2"). However, a failure triggered by the |error| call
would occur at position 0.
This problem could have been solved by silencing match failures in
action expressions, but that would lead to severe performance
problems (yes, I tried and measured). Other possible solutions are
hacks which I didn't want to introduce into PEG.js.
2. Triggering a match failure in action code could have lead to
unexpected backtracking.
Consider the following example:
class = "[" (charRange / char)* "]"
charRange = begin:char "-" end:char {
if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) {
error("Invalid character range: " + begin + "-" + end + ".");
}
// ...
}
char = [a-zA-Z0-9_\-]
Given input "[b-a]", the |charRange| rule would fail, but the
parser would try the |char| rule and succeed repeatedly, resulting
in "b-a" being parsed as a sequence of three |char|'s, which it is
not.
This problem could have been solved by using negative predicates,
but that would complicate the grammar and still wouldn't get rid of
unintuitive behavior.
Given these problems I decided to change the semantics of the |expected|
and |error| functions. They don't interact with regular match failure
mechanism anymore, but they cause and immediate parse failure by
throwing an exception. I think this is more intuitive behavior with less
harmful side effects.
The disadvantage of the new approach is that one can't backtrack from an
action-triggered error. I don't see this as a big deal as I think this
will be rarely needed and one can always use a semantic predicate as a
workaround.
Speed impact
------------
Before: 993.84 kB/s
After: 998.05 kB/s
Difference: 0.42%
Size impact
-----------
Before: 1019968 b
After: 975434 b
Difference: -4.37%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
The |error| function allows users to report custom match failures inside
actions.
If the |error| function is called, and the reported match failure turns
out to be the cause of a parse error, the error message reported by the
parser will be exactly the one specified in the |error| call.
Implements part of #198.
Speed impact
------------
Before: 999.83 kB/s
After: 1000.84 kB/s
Difference: 0.10%
Size impact
-----------
Before: 1017212 b
After: 1019968 b
Difference: 0.27%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
This is in anticipation of |peg$error|. The |peg$expected| and
|peg$error| internal functions will nicely mirror the |expected| and
|error| functions available to user code in actions.
Implements part of #198.
The |expected| function allows users to report regular match failures
inside actions.
If the |expected| function is called, and the reported match failure
turns out to be the cause of a parse error, the error message reported
by the parser will be in the usual "Expected ... but found ..." format
with the description specified in the |expected| call used as part of
the message.
Implements part of #198.
Speed impact
------------
Before: 1146.82 kB/s
After: 1031.25 kB/s
Difference: -10.08%
Size impact
-----------
Before: 950817 b
After: 973269 b
Difference: 2.36%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
After making the |?| operator return |null| instead of an empty string
in the previous commit, empty strings were still returned from
predicates. This didn't make much sense.
Return value of a predicate is unimportant (if you have one in hand, you
already know the predicate succeeded) and one could even argue that
predicates shouldn't return any value at all. The closest thing to
"return no value" in JavaScript is returning |undefined|, so I decided
to make predicates return exactly that.
Implements part of #198.
Before this commit, the |?| operator returned an empty string upon
unsuccessful match. This commit changes the returned value to |null|. It
also updates the PEG.js grammar and the example grammars, which used the
value returned by |?| quite often.
Returning |null| is possible because it no longer indicates a match
failure.
I expect that this change will simplify many real-world grammars, as an
empty string is almost never desirable as a return value (except some
lexer-level rules) and it is often translated into |null| or some other
value in action code.
Implements part of #198.
Using a special value to indicate match failure instead of |null| allows
actions to return |null| as a regular value. This simplifies e.g. the
JSON parser.
Note the special value is internal and intentionally undocumented. This
means that there is currently no official way how to trigger a match
failure from an action. This is a temporary state which will be fixed
soon.
The negative performance impact (see below) is probably caused by
changing lot of comparisons against |null| (which likely check the value
against a fixed constant representing |null| in the interpreter) to
comparisons against the special value (which likely check the value
against another value in the interpreter).
Implements part of #198.
Speed impact
------------
Before: 1146.82 kB/s
After: 1031.25 kB/s
Difference: -10.08%
Size impact
-----------
Before: 950817 b
After: 973269 b
Difference: 2.36%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
Before this commit, the |expected| property of an exception object
thrown when a generated parser encountered an error contained
expectations as strings. These strings were in a human-readable format
suitable for displaying in the UI but not suitable for machine
processing. For example, expected string literals included quotes and a
string "any character" was used when any character was expected.
This commit makes expectations structured objects. This makes the
machine processing easier, while still allowing to generate a
human-readable representation if needed.
Implements part of #198.
Speed impact
------------
Before: 1180.41 kB/s
After: 1165.31 kB/s
Difference: -1.28%
Size impact
-----------
Before: 863523 b
After: 950817 b
Difference: 10.10%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
In the bytecode generator, the |context.action| property wasn't
correctly reset when generating bytecode for sequence elements. As a
result, when a sequence was wrapped in an action and it contained
another sequence as an element, the generator thought that the inner
sequence was wrapped in an action too.
For example, the following grammar:
start = ("a" "b") "c" { return "x"; }
was compiled as if it looked like this:
start = ("a" "b" { return "x"; }) "c" { return "x"; }
This commit fixes the problem by resetting |context.action| correctly.
Fixes GH-168.
Code that calculated which part of the input to match against a literal
was wrong in case of case-insensitive literals when generating
speed-optimized parsers. As a result, matching of case-insensitive
literals worked only at the end of the input (where too big length
passed to the |substr| method didn't matter).
Fixes GH-153.
The deduplication skipped over an expected string right after the one
that was removed because the index variable was incorrectly incremented
in that case.
Based on a patch by @fresheneesz:
https://github.com/dmajda/pegjs/pull/146
The compiler passes are now split into three stages:
* check -- passes that check for various error conditions
* transform -- passes that transform the AST (e.g. to perform
optimizations)
* generate -- passes that are related to code generation
Splitting the passes into stages is important for plugins. For example,
if a plugin wants to add a new optimization pass, it can add it at the
end of the "transform" stage without any knowledge about other passes it
contains. Similarly, if it wants to generate something else than the
default code generator does from the AST, it can just replace all passes
in the "generate" stage by its own one(s).
More generally, the stages make it possible to write plugins that do not
depend on names and actions of specific passes (which I consider
internal and subject of change), just on the definition of stages (which
I consider a public API with to which semver rules apply).
Implements part of GH-106.
The |plugins| option allows users to use plugins that change how PEG.js
operates.
A plugin is any JavaScript object with a |use| method. After the user
calls |PEG.buildParser|, this method is called for each plugin with the
following two parameters:
* PEG.js config that describes used grammar parser and compiler
passes used to generate the parser
* options passed by user to |PEG.buildParser|
The plugin is expected to change the config as needed, possibly based on
the options passed by user. It can e.g. change the used grammar parser,
change the compiler passes (including adding its own), etc. This way it
can extend PEG.js in a flexible way.
Implements part of GH-106.
The |passes| parameter will allow to pass the list of passes from
|PEG.buildParser|. This will be used by plugins. The old way via setting
the |appliedPassNames| property is removed.
Implements part of GH-106.