Before this commit, the |expected| and |error| functions didn't halt the
parsing immediately, but triggered a regular match failure. After they
were called, the parser could backtrack, try another branches, and only
if no other branch succeeded, it triggered an exception with information
possibly based on parameters passed to the |expected| or |error|
function (this depended on positions where failures in other branches
have occurred).
While nice in theory, this solution didn't work well in practice. There
were at least two problems:
1. Action expression could have easily triggered a match failure later
in the input than the action itself. This resulted in the
action-triggered failure to be shadowed by the expression-triggered
one.
Consider the following example:
integer = digits:[0-9]+ {
var result = parseInt(digits.join(""), 10);
if (result % 2 === 0) {
error("The number must be an odd integer.");
return;
}
return result;
}
Given input "2", the |[0-9]+| expression would record a match
failure at position 1 (an unsuccessful attempt to parse yet another
digit after "2"). However, a failure triggered by the |error| call
would occur at position 0.
This problem could have been solved by silencing match failures in
action expressions, but that would lead to severe performance
problems (yes, I tried and measured). Other possible solutions are
hacks which I didn't want to introduce into PEG.js.
2. Triggering a match failure in action code could have lead to
unexpected backtracking.
Consider the following example:
class = "[" (charRange / char)* "]"
charRange = begin:char "-" end:char {
if (begin.data.charCodeAt(0) > end.data.charCodeAt(0)) {
error("Invalid character range: " + begin + "-" + end + ".");
}
// ...
}
char = [a-zA-Z0-9_\-]
Given input "[b-a]", the |charRange| rule would fail, but the
parser would try the |char| rule and succeed repeatedly, resulting
in "b-a" being parsed as a sequence of three |char|'s, which it is
not.
This problem could have been solved by using negative predicates,
but that would complicate the grammar and still wouldn't get rid of
unintuitive behavior.
Given these problems I decided to change the semantics of the |expected|
and |error| functions. They don't interact with regular match failure
mechanism anymore, but they cause and immediate parse failure by
throwing an exception. I think this is more intuitive behavior with less
harmful side effects.
The disadvantage of the new approach is that one can't backtrack from an
action-triggered error. I don't see this as a big deal as I think this
will be rarely needed and one can always use a semantic predicate as a
workaround.
Speed impact
------------
Before: 993.84 kB/s
After: 998.05 kB/s
Difference: 0.42%
Size impact
-----------
Before: 1019968 b
After: 975434 b
Difference: -4.37%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
The |expected| function allows users to report regular match failures
inside actions.
If the |expected| function is called, and the reported match failure
turns out to be the cause of a parse error, the error message reported
by the parser will be in the usual "Expected ... but found ..." format
with the description specified in the |expected| call used as part of
the message.
Implements part of #198.
Speed impact
------------
Before: 1146.82 kB/s
After: 1031.25 kB/s
Difference: -10.08%
Size impact
-----------
Before: 950817 b
After: 973269 b
Difference: 2.36%
(Measured by /tools/impact with Node.js v0.6.18 on x86_64 GNU/Linux.)
This is a complete rewrite of the PEG.js code generator. Its goals are:
1. Allow optimizing the generated parser code for code size as well as
for parsing speed.
2. Prepare ground for future optimizations and big features (like
incremental parsing).
2. Replace the old template-based code-generation system with
something more lightweight and flexible.
4. General code cleanup (structure, style, variable names, ...).
New Architecture
----------------
The new code generator consists of two steps:
* Bytecode generator -- produces bytecode for an abstract virtual
machine
* JavaScript generator -- produces JavaScript code based on the
bytecode
The abstract virtual machine is stack-based. Originally I wanted to make
it register-based, but it turned out that all the code related to it
would be more complex and the bytecode itself would be longer (because
of explicit register specifications in instructions). The only downsides
of the stack-based approach seem to be few small inefficiencies (see
e.g. the |NIP| instruction), which seem to be insignificant.
The new generator allows optimizing for parsing speed or code size (you
can choose using the |optimize| option of the |PEG.buildParser| method
or the --optimize/-o option on the command-line).
When optimizing for size, the JavaScript generator emits the bytecode
together with its constant table and a generic bytecode interpreter.
Because the interpreter is small and the bytecode and constant table
grow only slowly with size of the grammar, the resulting parser is also
small.
When optimizing for speed, the JavaScript generator just compiles the
bytecode into JavaScript. The generated code is relatively efficient, so
the resulting parser is fast.
Internal Identifiers
--------------------
As a small bonus, all internal identifiers visible to user code in the
initializer, actions and predicates are prefixed by |peg$|. This lowers
the chance that identifiers in user code will conflict with the ones
from PEG.js. It also makes using any internals in user code ugly, which
is a good thing. This solves GH-92.
Performance
-----------
The new code generator improved parsing speed and parser code size
significantly. The generated parsers are now:
* 39% faster when optimizing for speed
* 69% smaller when optimizing for size (without minification)
* 31% smaller when optimizing for size (with minification)
(Parsing speed was measured using the |benchmark/run| script. Code size
was measured by generating parsers for examples in the |examples|
directory and adding up the file sizes. Minification was done by |uglify
--ascii| in version 1.3.4.)
Final Note
----------
This is just a beginning! The new code generator lays a foundation upon
which many optimizations and improvements can (and will) be made.
Stay tuned :-)
Includes:
* Moving the source code from /src to /lib.
* Adding an explicit file list to package.json
* Updating the Makefile.
* Updating the spec and benchmark suites and their READMEs.
Part of a fix for GH-32.
PEG.js source code becomes a set of Node.js modules that include each
other as needed. The distribution version is built by bundling these
modules together, wrapping them inside a bit of boilerplate code that
makes |module.exports| and |require| work.
Part of a fix for GH-32.
When the Git repository will be a npm package, there will be no
preprocessing step and thus no @VERSION substitution. Let's get rid of
it.
Part of a fix for GH-32.
Before this commit, package.json in the project root directory was
preprocessed in order to insert correct version into it. This made it
invalid JSON and thus unusable for npm purposes.
This commit makes package.json a valid JSON by hardcoding the version
into it. I think that introducing this small duplicity is outweighted by
being able to use npm in project root directory. For example, it is now
possible to make the "npm test" command work and introduce Travis CI
integration.
This is the first of many commits that gradually convert PEG.js's test
suite from QUnit to Jasmine, cleaning it up on the way.
Main reason for the change is that Jasmine allows nested contexts,
allowing to structure the tests in a better way than QUnit. Moreover,
the tests needed to be cleaned up a bit.