Report left recursion also in cases where the recursive rule invocation
is not a direct element of a sequence, but is wrapped inside an
expression.
Fixes#359.
Before this commit, the |reportLeftRecursion| pass was written in
functional style, passing the |visitedRules| array around as a parameter
and making a new copy each time a rule was visited. This apparently
caused performance problems in some deeply recursive grammars.
This commit makes it so that there is just one array which is shared
across all the visitor functions via a closure and modified as rules are
visited.
I don't like losing the functional style (it was elegant) but
performance is more important.
Fixes#203.
The |util.puts| and |util.error| functions are deprecated in Node.js
0.12.x.
Based on a pull request by Jan Stránský (@burningtree):
https://github.com/pegjs/pegjs/pull/334
Add missing |named| case to the visitor in lib/compiler/asts.js, which
makes the infinite loop and left recursion detectors work correctly with
named rules.
The missing case caused |make parser| to fail with:
140:34: Infinite loop detected.
make: *** [parser] Error 1
* In strict mode code, functions can only be declared at top level or
immediately within another function. This means functions defined in
the initializer would throw.
* When the "use strict"; directive is set, constructors called without
`new` will set the execution context to undefined. JSHint tries to be
clever and forces on newcap. Suppress this behaviour, especially
because newcap has gone the way of the dodo.
Before this commit, position details (line and column) weren't computed
efficiently from the current parse position. There was a cache but it
held only one item and it was rarely hit in practice. This resulted in
frequent rescanning of the whole input when the |location| function was
used in various places in a grammar.
This commit extends the cache to remember position details for any
position they were ever computed for. In case of a cache miss, the cache
is searched for a value corresponding to the nearest lower position,
which is then used to compute position info for the desired position
(which is then cached). The whole input never needs to be rescanned.
No items are ever evicted from the cache. I think this is fine as the
max number of entries is the length of the input. If this becomes a
problem I can introduce some eviction logic later.
The performance impact of this change is significant. As the benchmark
suite doesn't contain any grammar with |location| calls I just used a
little ad-hoc benchmark script which measured time to parse the grammar
of PEG.js itself (which contains |location| calls):
var fs = require("fs"),
parser = require("./lib/parser");
var grammar = fs.readFileSync("./src/parser.pegjs", "utf-8"),
startTime, endTime;
startTime = (new Date()).getTime();
parser.parse(grammar);
endTime = (new Date()).getTime();
console.log(endTime - startTime);
The measured time went from ~293 ms to ~54 ms on my machine.
Fixes#337.
Replace |line|, |column|, and |offset| properties of tracing events with
the |location| property. It contains an object similar to the one
returned by the |location| function available in action code:
{
start: { offset: 23, line: 5, column: 6 },
end: { offset: 25, line: 5, column: 8 }
}
For the |rule.match| event, |start| refers to the position at the
beginning of the matched input and |end| refers to the position after
the end of the matched input.
For |rule.enter| and |rule.fail| events, both |start| and |end| refer to
the current position at the time the rule was entered.
Replace |line|, |column|, and |offset| properties of |SyntaxError| with
the |location| property. It contains an object similar to the one
returned by the |location| function available in action code:
{
start: { offset: 23, line: 5, column: 6 },
end: { offset: 25, line: 5, column: 8 }
}
For syntax errors produced in the middle of the input, |start| refers to
the first unparsed character and |end| refers to the character behind it
(meaning the span is 1 character). This corresponds to the portion of
the input in the |found| property.
For syntax errors produced the end of the input, both |start| and |end|
refer to a character past the end of the input (meaning the span is 0
characters).
For syntax errors produced by calling |expected| or |error| functions in
action code the location info is the same as the |location| function
would return.
Preform the following renames:
* |reportedPos| -> |savedPos| (abstract machine variable)
* |peg$reportedPos| -> |peg$savedPos| (variable in generated code)
* |REPORT_SAVED_POS| -> |LOAD_SAVED_POS| (instruction)
* |REPORT_CURR_POS| -> |UPDATE_SAVED_POS| (instruction)
The idea is that the name |reportedPos| is no longer accurate after the
|location| change (seea the previous commit) because now both
|reportedPos| and |currPos| are reported to user code. Renaming to
|savedPos| resolves this inaccuracy.
There is probably some better name for the concept than quite generic
|savedPos|, but it doesn't come to me.
Replace |line|, |column|, and |offset| functions with the |location|
function. It returns an object like this:
{
start: { offset: 23, line: 5, column: 6 },
end: { offset: 25, line: 5, column: 8 }
}
In actions, |start| refers to the position at the beginning of action's
expression and |end| refers to the position after the end of action's
expression. This allows one to easily add location info e.g. to AST
nodes created in actions.
In predicates, both |start| and |end| refer to the current position.
Fixes#246.
Beside the recursion detector, the visitor will also be used by infinite
loop detector.
Note the newly created |asts.matchesEmpty| function re-creates the
visitor each time it is called, which makes it slower than necessary.
This could have been worked around in various ways but I chose to defer
that optimization because real-world performance impact is small.